Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chuyengia247

cho x,y,z dương thỏa \(xyz=1\)

tìm min \(P=\dfrac{x+2}{x^3\left(y+z\right)}+\dfrac{y+2}{y^3\left(z+x\right)}+\dfrac{z+2}{z^3\left(x+y\right)}\)

Minhmetmoi
2 tháng 2 2022 lúc 20:55

Ta có nhận xét sau:

     \(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)

Tương tự với các phân thức còn lại

Ta đặt:

     \(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)

     \(\Rightarrow abc=1\) và \(a,b,c>0\)

Biểu thức P trở thành:

     \(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)

Dễ thấy:

     \(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)

     \(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)

Do đó:

     \(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Lê Song Phương
Xem chi tiết
Dương Thiên Thanh
Xem chi tiết
Xem chi tiết
Cris devil gamer
Xem chi tiết
Hi Mn
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
Xem chi tiết
Nga Nguyễn
Xem chi tiết
Cao Tường Vi
Xem chi tiết
swalal
Xem chi tiết