Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Cresent Moon
Xem chi tiết
Unruly Kid
26 tháng 12 2017 lúc 17:51

Áp dụng Cauchy-Schwarz, ta có:

\(VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)

\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}+\dfrac{7}{\dfrac{\left(a+b+c\right)^2}{3}}=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)

Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:11

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

Lưu Thị Thảo Ly
Xem chi tiết
Lightning Farron
23 tháng 6 2017 lúc 18:34

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Nguyễn Lê Việt ANh
Xem chi tiết
Akai Haruma
7 tháng 9 2018 lúc 17:36

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(\frac{a}{bc}+\frac{b}{ac}\geq 2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\geq 2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)

\(\frac{a}{bc}+\frac{c}{ab}\ge 2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)

Cộng các BĐT trên theo vế và rút gọn

\(\Rightarrow \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Tuấn Phạm Minh
Xem chi tiết
Võ Đông Anh Tuấn
24 tháng 5 2018 lúc 20:03

Áp dụng BĐT Cô si dạng phân số ta có :

\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+3}\ge\dfrac{9}{ab+bc+ca+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Xảy ra khi a = b = c = 1 .

Trúc Giang
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 6 2021 lúc 21:02

\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)

\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)

Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\)\(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)

Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết