$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Cho các số thực dương a, b, c thỏa: \(\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{3}{4}-\dfrac{1}{a}\). Tìm min:
\(A=\dfrac{\sqrt{b^2+bc+c^2}}{a^2}+\dfrac{\sqrt{a^2+ab+b^2}}{c^2}+\dfrac{\sqrt{c^2+ca+a^2}}{b^2}\).
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Cho 3 số thực dương a, b, c thỏa mãn: \(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{3}\). Tìm giá trị lớn nhất của biểu thức
P = \(\dfrac{1}{\sqrt{6a^2+3b^2}}+\dfrac{1}{\sqrt{6b^2+3c^2}}+\dfrac{1}{\sqrt{6c^2+3a^2}}\)
Cho 3 số dương a, b, c thoã mãn a+b+c=1. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{c + ab}} + \sqrt{\dfrac{bc}{a + bc}} + \sqrt{\dfrac{ca}{b + ac}} ≤ \dfrac{3}{2}\)
1)Cho 3 số a,b,c dương thỏa mãn ab+bc+ca=3abc.
tìm Max \(\dfrac{11a+4b}{4a^2-ab+2b^2}+\dfrac{11b+4c}{4b^2-bc+2c^2}+\dfrac{11c+4a}{4c^2-ca+2a^2}\)
2) cho a,b,c là các số dương thỏa mãn abc=1.CMR
\(\dfrac{1}{a^5+b^2+c^2}+\dfrac{1}{a^2+b^5+c^2}+\dfrac{1}{a^2+b^2+c^5}\le\dfrac{3}{a^2+b^2+c^2}\)
3) cho a,b,c>0 thỏa mãn a+b+c=3abc.CMR
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\)
cho a ≥ 3, b ≥ 4,c ≥ 2 tìm max P=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
cho a,b,c ko âm thỏa ab+bc+ca=1 .tìm Min \(\sum\dfrac{1}{\sqrt{a^2+b^2}}\)
P= \(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}\sqrt{\dfrac{ca}{b+ca}}\)
cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1 . Tìm giá trị lớn nhất của biểu thức P
Cho các số thực dương \(a;b;c\) và thỏa mãn: \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{a}{a+2.\sqrt{a+bc}}+\dfrac{b}{b+2.\sqrt{b+ac}}+\dfrac{c}{c+2.\sqrt{c+ab}}\le\dfrac{3}{5}\)
P/s: Em nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!