\(\dfrac{2\left(x-1\right)}{x}=1+\dfrac{2}{x\left(x-1\right)}\)
Tính
a)\(\left(\dfrac{\left(x-1\right)^2}{\left(3x+x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{x^2+x}{x^2+1}\)
b)\(\left(\dfrac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\dfrac{2x^2-x+10}{2\left(x^3+x^2+x+1\right)}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{2\left(x-1\right)}\right).\dfrac{2}{x-1}\)
c)\(\left(\dfrac{x^2}{x^2-5x+6}+\dfrac{x^2}{x^2-3x+2}\right):\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
Chứng minh rằng :
a)\(\dfrac{1}{x}\)-\(\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
b)\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\)
c)\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
a)Ta thấy:
\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)
\(=\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrowđpcm\)
b)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)
\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)
c)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)
a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)
Tìm x.
\(1,\dfrac{3}{2}\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)=\dfrac{1}{4}\)
\(2,3\left(x-2\right)-4\left(x+2\right)=x+2\)
\(3,4x\left(x-1\right)+4x-2\left(x+1\right)=-2\)
\(4,x\left(x+2\right)-3\left(x-1\right)=3\left(x+1\right)\)
Giải phương trình:
a) \(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\)
b) \(\dfrac{3}{\left(x-1\right)\left(x-2\right)}+\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\dfrac{1}{x+2}=\dfrac{12}{8+x^3}\)
a: =>1+3x-6=-x+3
=>3x-5=-x+3
=>4x=8
=>x=2(loại)
b: \(\Leftrightarrow\dfrac{3\left(x-3\right)+2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
=>3x-9+2x-4=x-1
=>5x-13=x-1
=>4x=12
=>x=3(loại)
c: =>x^2-2x+4+x^3+8=12
=>x^3+x^2-2x=0
=>x(x^2+x-2)=0
=>x(x+2)(x-1)=0
=>x=0 hoặc x=1
Tìm x :
a) \(\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|=4x\)
b) \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+..+\left|x+\dfrac{1}{110}\right|=11x\)
Lời giải:
a) Hiển nhiên vế trái $\geq 0$ do tính chất của trị tuyệt đối.
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0$. Đến đây ta có thể phá bỏ dấu trị tuyệt đối
$|x+\frac{11}{17}|+|x+\frac{2}{17}|+|x+\frac{4}{17}|=4x$
$x+\frac{11}{17}+x+\frac{2}{17}+x+\frac{4}{17}=4x$
$3x+1=4x$
$x=1$
b) Hiển nhiên vế trái $\geq 0$ nên $11x\geq 0\Rightarrow x\geq 0$
Khi đó:
$|x+\frac{1}{2}|+|x+\frac{1}{6}|+|x+\frac{1}{12}|+...+|x+\frac{1}{110}|=x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}$
$=10x+(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110})$
$=10x+(1-\frac{1}{11})=10x+\frac{10}{11}=11x$
$\Rightarrow x=\frac{10}{11}$
trời đất dung hoa vạn vật sinh sôi con mẹ mày lôi thôi đầu xanh mỏ đỏ gặp cỏ thay cơm đầu tóc bờm sờm khạc đờm tung tóe mà TAO ĐỊT CON MẸ MÀY NHƯ LỒN TRAU LỒN CHÓ LỒN BÓ XI MĂNG LỒN CHẰNG MẠNG NHỆN MÀ LỒN BẸN LÁ KHOÁI LỒN KHAI LÁ MIT LỒN ĐÍT LỒN TƠM LỒN TƠM LỒN ĐẬM LỒN GIA MAI LỒN ỈA CHẢY LỒN NHẨY HIPHOP LỒN LÔ XỐP LỒN HÀNG HIỆU LỒN HÀNG TRIỆU CON SÚC VẬT MÀ NÓ ĐÂM VÀO CÁI CON ĐĨ MẸ MÀY TỪ TRÊN CAO MÀ LAO ĐẦU XUỐNG ĐẤT ĐỊT LẤT PHẤT NHƯ MƯA RƠI
Cho \(\left(x-\dfrac{1}{x}\right):\left(x+\dfrac{1}{x}\right)\)\(=\dfrac{1}{2}\). Tính \(\left(x^2-\dfrac{1}{x^2}\right):\left(x^2+\dfrac{1}{x^{2.}}\right)\)
Ta có \(\left(x-\dfrac{1}{x}\right):\left(x+\dfrac{1}{x}\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{x^2-1}{x^2+1}=\dfrac{1}{2}\Leftrightarrow x^2=3\).
Do đó: \(\left(x^2-\dfrac{1}{x^2}\right):\left(x^2+\dfrac{1}{x^2}\right)=\dfrac{3-\dfrac{1}{3}}{3+\dfrac{1}{3}}=\dfrac{8}{10}=\dfrac{4}{5}\).
chứng minh rằng :
a) \(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)=\dfrac{x+1}{2x}\)
b)\(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x+1}{x}=\dfrac{2x}{x-1}\)
c)\(\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{x^3}=\dfrac{x}{x-1}\)
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
thực hiện phép tính:
\(\dfrac{1}{x\left(x+1\right)}\)+\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)+\(\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)+...+\(\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
Rút gọn:
\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
Giải::
ĐK: x khác +- 1
\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)
rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.
Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.
NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\left(1\right)=\dfrac{y}{x\left(2x-y\right)}-\dfrac{4x}{y\left(2x-y\right)}=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{-\left(y-2x\right)\left(y+2x\right)}{xy\left(y-2x\right)}=\dfrac{-y-2x}{xy}\\ \left(2\right)=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\\ \left(3\right)=\dfrac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\\ \left(4\right)=\dfrac{4x^2+15x+4+4x+7+1}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}=\dfrac{4x^2+19x+12}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}\)