Giải p/t: \(X^2\)+5X+8=2\(\sqrt{X-2}\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
d.
ĐKXĐ: \(x>1\)
\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)
\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)
\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)
\(\Leftrightarrow1-\dfrac{1}{ab}=0\)
\(\Leftrightarrow ab=1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)
\(\Leftrightarrow x^3-1=1\)
\(\Leftrightarrow x=\sqrt[3]{2}\)
GIải hệ phương trình: \(\left\{{}\begin{matrix}5x^2+3x\sqrt{x^2-y}=3y+8\\\left(4x-2\right)\sqrt{x^2-y}=5x+2y-5x^2+2\end{matrix}\right.\)
bài 1,giải các phương trình sau
a,\(\sqrt{5x-2}=7\)
b,\(\sqrt{9x-27}+\sqrt{25x-75}=24\)
c,\(x^2-5x+8=2\sqrt{x-2}\)
bài 2,cho A=\(\left\{\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right\}\div\dfrac{2}{\sqrt{x}+2}\)
NÊU ĐKXĐ VÀ RÚT GỌN A
bài 3,cho B=\(\left\{\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right\}\times\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)
NÊU ĐKXĐ VÀ RÚT GỌN B
bài4,cho C=\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right)\times\left(1-\dfrac{3}{\sqrt{x}}\right)\)
NÊU ĐKXĐ VÀ RÚT GỌN C
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
Bài 2:
ĐKXĐ: $x\geq 0; x\neq 4$
\(A=\frac{\sqrt{x}(\sqrt{x}-2)-\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}+2)\sqrt{x}-2)}.\frac{\sqrt{x}+2}{2}\\ =\frac{-4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}+2}{2}\\ =\frac{-2\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{2-\sqrt{x}}\)
giải pt : \(2\sqrt{x^3+8}=x^2-5x-2\)
ĐKXĐ: \(x\ge-2\).
Đặt \(\sqrt{x+2}=a;\sqrt{x^2-2x+4}=b\left(a,b\ge0\right)\).
PT đã cho tương đương:
\(2ab=b^2-3a^2\Leftrightarrow\left(a+b\right)\left(b-3a\right)=0\Leftrightarrow b=3a\).
Khi đó \(\sqrt{x^2-2x+4}=3\sqrt{x+2}\Leftrightarrow x^2-2x+4=9x+18\Leftrightarrow x^2-11x-14=0\Leftrightarrow...\).
Giải bpt :
\(x+\sqrt{x-1}\ge3+\sqrt{2\left(x^2-5x+8\right)}\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow4\sqrt{2x^2-10x+16}-4x+12-4\sqrt{x-1}\le0\)
\(\Leftrightarrow4\sqrt{2x^2-10x+16}-5x+9+x+3-4\sqrt{x-1}\le0\)
\(\Leftrightarrow\frac{16\left(2x^2-10x+16\right)-\left(5x-9\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}\le0\)
\(\Leftrightarrow\frac{7\left(x-5\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}\le0\)
\(\Leftrightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy BPT có nghiệm duy nhất \(x=5\)
giải pt:
\(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x+18}-5=0\)
Tìm x thỏa mãn:
\(\left(\sqrt{x}+1\right)\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
Câu 1:
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-2}-\dfrac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0\)
=>\(\dfrac{5}{6}\sqrt{x-2}=5\)
=>căn x-2=5:5/6=6
=>x-2=36
=>x=38
giải pt
\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
\(pt\Leftrightarrow2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x+1\right)\left(x+1\right)^2}=\left(x+1\right)\left(5x^2-8x+8\right)\)\(\Leftrightarrow2\left(x+1\right)\sqrt{x}+\left(x+1\right)\sqrt{3\left(2x+1\right)}-\left(x+1\right)\left(5x^2-8x+8\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2+8x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\circledast\end{matrix}\right.\)
Giải (*)\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\)
\(\Leftrightarrow2\sqrt{x}-2+\sqrt{3\left(2x+1\right)}-3=5x^2-8x+3\)
\(\Leftrightarrow\frac{4x-4}{2\sqrt{x}+2}+\frac{6x-6}{\sqrt{3\left(2x+1\right)}+3}=\left(x-1\right)\left(5x-3\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{3\left(2x+1\right)}+3}-5x+3\right)=0\)
x=1
bạn giải nốt cái còn lại nhá
Giải phương trình
a) \(\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2+2\sqrt{1-x^2}\right)=8\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)
\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)
Pt trở thành:
\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)
\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)
\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)
b.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)
Pt trở thành:
\(t=t^2-4-16\Leftrightarrow...\)