Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2021 lúc 21:25

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Nguyễn Đức Việt
29 tháng 4 2023 lúc 17:41

4. Đk: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)

Nguyen Minh
Xem chi tiết
Trần Minh Hoàng
31 tháng 5 2021 lúc 16:01

\(\left\{{}\begin{matrix}\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+\sqrt{x}=y+\sqrt{y}\left(1\right)\\\left|x-1\right|+\left|y-2\right|=1+x^2-y^2\left(2\right)\end{matrix}\right.\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\xy+\dfrac{x-y}{x^2+y^2+1}\ge0\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}-y=\sqrt{y}-\sqrt{x}\)

\(\Leftrightarrow\dfrac{y\left(x-y\right)+\dfrac{x-y}{x^2+y^2+1}}{\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+y}=\dfrac{x-y}{-xy}\Leftrightarrow\left(x-y\right)\left[\dfrac{y+\dfrac{1}{x^2+y^2+1}}{\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+y}+xy\right]=0\Leftrightarrow x=y\).

Thay x = y vào (2) ta có \(\left|y-1\right|+\left|y-2\right|=1\). (*)

Ta có \(\left|y-1\right|+\left|y-2\right|=\left|y-1\right|+\left|2-y\right|\ge y-1+2-y=1\).

Mà đẳng thức xảy ra ở (1) nên ta phải có \(1\le y\le2\). (TMĐK)

Vậy pt đã cho có vô số nghiệm \(x=y=k\) với \(1\le k\le2\)

 

Nguyễn Lê Thuỳ Linh (Bạn...
Xem chi tiết
Khang Diệp Lục
2 tháng 2 2021 lúc 9:06

\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)

Khang Diệp Lục
2 tháng 2 2021 lúc 9:29

\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))

김태형
Xem chi tiết
Nguyễn Trọng Chiến
4 tháng 2 2021 lúc 15:47

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)x-\left(\sqrt{2}+1\right)y=\left(\sqrt{2+1}\right)\sqrt{2}\\x+\left(\sqrt{2+1}\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\left(\sqrt{2}+1\right)y=2+\sqrt{2}\left(1\right)\\x+\left(\sqrt{2}+1\right)y=1\left(2\right)\end{matrix}\right.\)

Cộng từng vế của (1) và (2) ta được: \(\Rightarrow2x=3+\sqrt{2}\Leftrightarrow x=\dfrac{3+\sqrt{2}}{2}\)

Thay vào (2) ta được: \(\Rightarrow\dfrac{3+\sqrt{2}}{2}+\left(\sqrt{2}+1\right)y=1\Leftrightarrow\left(\sqrt{2}+1\right)y=1-\dfrac{3+\sqrt{2}}{2}=\dfrac{-\sqrt{2}-1}{2}\)

\(\Leftrightarrow y=\dfrac{-\sqrt{2}-1}{2\left(\sqrt{2}+1\right)}=\dfrac{-1}{2}\) Vậy...

Lê Song Phương
Xem chi tiết
Đoàn Đức Hà
26 tháng 12 2022 lúc 16:40

ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).

Phương trình (1) tương đương với: 

\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)

- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện) 

suy ra \(x=y=0\) (không thỏa mãn).

- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được: 

\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)

\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)

\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)

\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)

Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán. 

Đáp án ra số khá xấu nên thầy không ghi ra đây. 

Em có thể tham khảo cách làm nhé. 

 

 

 

Hải Yến Lê
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 7:38

\(ĐK:x,y\in R\)

Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)

\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)

Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)

\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)

Uchiha Itachi
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 18:50

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(a\left(a^2-b^2+1\right)=b\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{x+2}=\sqrt{y}\Rightarrow y=x+2\)

Thay xuống pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{2}{7}\left(loại\right)\end{matrix}\right.\)

Mai Thị Thúy
Xem chi tiết
Hồng Phúc
30 tháng 7 2021 lúc 17:30

a, ĐK: \(x,y\ge0\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+3}=x+1\)

\(\Leftrightarrow x+3=x^2+2x+1\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)

Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)

Vậy pt đã cho có nghiệm \(x=y=1\)

Hồng Phúc
30 tháng 7 2021 lúc 17:36

b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)

Vậy ...

Hồng Phúc
30 tháng 7 2021 lúc 17:44

c, Đặt \(\left\{{}\begin{matrix}x^2+y^2=a\\xy=b\end{matrix}\right.\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2=9\)

\(\Rightarrow x+y=\pm3\)

TH1: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=-3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

MiMi VN
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 9:39

Ta có: \(\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\x+\left(\sqrt{3}+\sqrt{2}\right)y=\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0y=-2\sqrt{2}+2\sqrt{3}\left(vôlý\right)\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

Vậy: Hệ phương trình vô nghiệm