Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uchiha Itachi

Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x+2}.\left(x-y+3\right)=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)

Nguyễn Việt Lâm
14 tháng 5 2021 lúc 18:50

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(a\left(a^2-b^2+1\right)=b\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{x+2}=\sqrt{y}\Rightarrow y=x+2\)

Thay xuống pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{2}{7}\left(loại\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Uchiha Itachi
Xem chi tiết
Nguyen Minh
Xem chi tiết
ffff
Xem chi tiết
Adu Darkwa
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
Nguyễn Tuấn Khoa
Xem chi tiết
Thiên Thương Lãnh Chu
Xem chi tiết
chanh
Xem chi tiết
Huy Nguyen
Xem chi tiết