1 số gợi ý
hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(2x-2y-1\right)=6\left(y+2\right)\\6y+12\sqrt{2x-1}=2y^2-2x+46\end{matrix}\right.\)(1)
Đặt \(\sqrt{2x-1}=t\left(t\ge0\right)\)
(1)\(\Leftrightarrow\left\{{}\begin{matrix}\left(t^2+1\right)\left(t^2-2y\right)=6\left(y+2\right)\left(2\right)\\6y+12t=2y^2-t^2+45\end{matrix}\right.\)
(2)\(\Leftrightarrow\left(t^2+4\right)\left(t^2-2y-3\right)=0\)
\(\Leftrightarrow t^2-2y-3=0\)
ta có hpt mới sau : \(\left\{{}\begin{matrix}t^2-2y-3=0\\2y^2-t^2+45=6y+12t\end{matrix}\right.\)
một cách trâu bò nhưng hiệu quả là
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2y^2-t^2-6y-12t+45=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2\left(\dfrac{t^2-3}{2}\right)^2-t^2-6\left(\dfrac{t^2-3}{2}\right)-12t+45=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)
\(\left(a,b,n\in N\right)\left\{{}\begin{matrix}n^2=a+b\\n^3+2=a^2+b^2\end{matrix}\right.\)
Áp dụng BĐT cơ bản : \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)
\(\rightarrow n^3+2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\left(n^2\right)^2=\dfrac{1}{2}n^4\)
\(\Rightarrow n^3+2-\dfrac{n^4}{2}\ge0\)\(\Rightarrow0\le n\le2\)
Xét từng TH của n và kết quả nhận được là \(n=2\); (a,b) là hoán vị của (1,3)
tớ mượn test cái nha
Áp dụng định lí viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-3\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)
\(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-1\right)=3\)
\(\leftrightarrow\left(x_1\right)^5+\left(2x_2\right)^5-\left(x_1+x_2\right)=3\)
\(\leftrightarrow x_1^5+\left(2x_2\right)^5-\left(-3\right)=3\)
\(x_1^5+\left(2x_2\right)^5=0\leftrightarrow x_1=-2x_2\)
Thay vào (1)\(\rightarrow x_1=-6;x_2=3\)
Thay vào (2)\(\rightarrow m-1=\left(-6\right).3=-18\rightarrow m=-17\)