Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Thảo Lương

giải phương trình bằng cách đặt ẩn phụ

a. \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{3}{y-2}=5\\\dfrac{3}{x-2}+\dfrac{2}{y-2}=5\end{matrix}\right.\) 

b.\(\left\{{}\begin{matrix}\sqrt{x-3}-2\sqrt{y-1}=2\\2\sqrt{x+3}-\sqrt{y-1}=4\end{matrix}\right.\)

Nguyễn Hoàng Minh
25 tháng 12 2021 lúc 14:59

\(a,ĐK:x,y\ne2\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)

\(b,ĐK:x\ge3;y\ge1\)

Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)


Các câu hỏi tương tự
Adu Darkwa
Xem chi tiết
ffff
Xem chi tiết
Nguyen Minh
Xem chi tiết
Trần Thị Mỹ Trinh
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Anh Quynh
Xem chi tiết
Pink Pig
Xem chi tiết