Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Yến Lê

Giải hệ phương trình 

\(\left\{{}\begin{matrix}\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}=\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}\\\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\end{matrix}\right.\)

Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 7:38

\(ĐK:x,y\in R\)

Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)

\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)

Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)

\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)


Các câu hỏi tương tự
Lalisa Manobal
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
poppy Trang
Xem chi tiết
poppy Trang
Xem chi tiết