Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Amy_Amy
Xem chi tiết
nguyen van huy
5 tháng 1 2018 lúc 19:48

a2 + 3b2 = 4ab

=> a2 + b2 + 2b2 - 2ab - 2ab = 0

=> (a2 - 2ab + b2) - 2b(a - b) = 0

=> (a - b)2 - 2b(a - b) = 0

=> (a - b)(a - b - 2b) = 0

=> (a - b)(a - 3b) = 0

*Xảy ra 2 trường hợp: a - b = 0 => a = b (vô lí vì a > b > 0)

                          và    a - 3b = 0 => a = 3b

Vậy A = ...................Bạn thay a = 3b vào A là xong

Amy_Amy
5 tháng 1 2018 lúc 19:49

Đúng rồi !!

Kim Jeese
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 11:18

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm12\\c=\pm16\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)\in\left\{\left(8;12;16\right),\left(-8;-12;-16\right)\right\}\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 13:03

Cách khác:

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)

Ta có: \(a^2+3b^2-2c^2=-16\)

\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)

\(\Leftrightarrow k^2=16\)

Trường hợp 1: k=4

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=8\\b=3k=12\\c=4k=16\end{matrix}\right.\)

Trường hợp 2: k=-4

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=-8\\b=3k=-12\\c=4k=-16\end{matrix}\right.\)

khánh hân
Xem chi tiết
Ngọc Anh
Xem chi tiết
Nguyen hoan
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 16:27

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

Trần Vũ Phương Thảo
Xem chi tiết
Nguyễn Ngọc Huy Toàn
23 tháng 5 2022 lúc 14:35

`a^2+4ab-5b^2=0`

`<=>a^2+4ab+4b^2-9b^2=0`

`<=>(a+2b)^2-9b^2=0`

`<=>(a+2b-3b)(a+2b+3b)=0`

`<=>(a-b)(a+5b)=0`

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-5b\end{matrix}\right.\)

`Q={2a-b}/{a-b}+{3a-2b}/{a+b}`

Với `a=b` `=>` giá trị vô nghĩa

Với `a=-5b` 

`Q={-10b-b}/{-5b-b}+{-15b-2b}/{-5b+b}`

`Q={-11b}/{-6b}+{-17b}/{-4b}`

`Q=11/6+17/4`

`Q=73/12`

 

Ha Pham
Xem chi tiết
Du Xin Lỗi
23 tháng 12 2022 lúc 18:12

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

Cíuuuuuuuuuu
Xem chi tiết
Trên con đường thành côn...
28 tháng 7 2021 lúc 11:13

undefined

Trên con đường thành côn...
28 tháng 7 2021 lúc 11:18

undefined

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 11:29

a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)

\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)

\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)

Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)

Cíuuuuuuuuuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 11:36

a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)

\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)

\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)

Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)