Cho số thực a khác 0 và b thay đổi nhưng thỏa 2a+b=4ac. C/m biểu thức \(Q=\frac{a}{b}+\frac{b}{4a}-4ab\) là hằng số
Cho các số thực dương a,b,c thay đổi thỏa mãn \(\dfrac{1}{a^2}\) + \(\dfrac{1}{b^2}\)+ \(\dfrac{1}{c^2}\)= 3 . Tìm GTLN của biểu thức
P = \(\dfrac{1}{\left(2a+b+c\right)^2}\)+ \(\dfrac{1}{\left(2b+c+a\right)^2}\)+ \(\dfrac{1}{\left(2c+a+b\right)^2}\)
cho 3 số thực dương a,b,c thay đổi thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
tìm max của \(P=\dfrac{1}{\left(2a+b+c\right)^2}+\dfrac{1}{\left(2b+c+a\right)^2}+\dfrac{1}{\left(2c+a+b\right)^2}\)
Cho biểu thức: P=\(\dfrac{1}{3+2a+b+ab}\)+\(\dfrac{1}{3+2b+c+bc}\)+\(\dfrac{1}{3+2c+a+ca}\)
với a, b, c là các số thực làm cho P xác định và thỏa mãn điều kiện: a+b+c+bc+ca+ab+abc=0. CMR: P=1Cho a;b;c là các số thực dương thay đổi thỏa mãn : a+b+c=3.
a) \(CMR:a^2+b^2+c^2\ge ab^2+bc^2+ca^2\)
b) Tìm giá trị nhỏ nhất của biểu thức : \(P=a^2+b^2+c^2+\dfrac{ab+bc+ac}{a^2b+b^2c+c^2a}\)
cho a, b, c là các số thực dương thỏa mãn a+b+c=1. tìm giá trị nhỏ nhất của biểu thức \(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\)
Cho a, b, c là các số thực dương thay đổi thoả mãn: a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=14\left(a^2+b^2+c^2\right)+\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1.Tìm giá trị nhỏ nhất của biểu thức:
\(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\)
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)