Cho số thực a khác 0 và b thay đổi nhưng thỏa 2a+b=4ac. C/m biểu thức Q=\(\dfrac{a}{b}+\dfrac{b}{4a}-4ab\) là hằng số
giúp e với mn ơi :'(
Cho a,b,c là các số thực dương thay đổi .Tìm GTNN của biểu thức:
\(P=\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\frac{c}{4a}\)
Cho các số thực dương a,b,c thay đổi thỏa mãn a+b+c=3
Tìm GTNN của biểu thức
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho a,b là 2 số thay đổi thỏa mãn điều kiện a>0 và \(a+b\ge1\).Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{8a^2+b}{4a}+b^2\)
Cho các số thực a,b,c thay đổi thỏa mãn điều kiện: \(\left\{{}\begin{matrix}a,b,c>0\\abc=1\end{matrix}\right.\)
Chứng minh rằng:
\(A=\frac{a^4b}{a^2+1}+\frac{b^4c}{b^1+1}+\frac{c^4a}{c^2+1}\ge\frac{3}{2}\)
1. Với các số thực dương a, b, c thay đổi thỏa mãn điều kiện a2+b2+c2+2abc=1, tìm GTLN của biểu thức P=ab+bc+ca-abc.
2. Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Cho hai số thực a;b thay đổi thỏa mãn điều kiện \(a+b\ge1\) và \(a>0\)
Tìm GTNN của \(A=\frac{8a^2+b}{4a}+b^2\)
Cho a, b, c thỏa mãn \(0< a,b,c< \frac{1}{2}\) và 2a + 3b + 4c = 3. Tìm GTNN của biểu thức:
\(P=\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
1 . Cho a,b,c là các số thực dương. Chứng minh
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{1}{4}\left(a+b+c\right)\)
2 .
Cho a,b là hai số thực dương thỏa mãn: a+b≤1
Tìm giá trị nhỏ nhất của : \(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab\)