Lời giải:
Vì $a+b\geq 1\Rightarrow b\geq 1-a; a\geq 1-b$. Do đó:
\(A\geq \frac{8a^2+1-a}{4a}+b^2=2a+\frac{1}{4a}-\frac{1}{4}+b^2\)
\(\geq a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2=\left(a+\frac{1}{4a}\right)+(b^2-b+\frac{1}{4})+\frac{1}{2}\)
Áp dụng BĐT AM-GM: \(a+\frac{1}{4a}\geq 1\)
$b^2-b+\frac{1}{4}=(b-\frac{1}{2})^2\geq 0$
Do đó: $A\geq 1+0+\frac{1}{2}=\frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=\frac{1}{2}$