Tìm gtnn
a,\(\dfrac{2x+1}{x^2}\)
b,\(\dfrac{4x^2-2x+1}{x^2}\)
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Cho \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) Rút gọn.
b) Tìm GTNN của P khi x>1
Em cần câu b ạ. Cảm ơn ạ.
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
Tìm GTNN của: C= x + \(\dfrac{1}{4x}\)+ \(\dfrac{x}{\left(2x+1\right)^{ }2}\)
P/s : Mik nghĩ là \(\left(2x+1\right)^2\)
\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\left[\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\right]+\dfrac{3}{4}\left(x+\dfrac{1}{4x}\right)-\dfrac{1}{8}\)
AD BĐT AM - GM ta được : \(\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\ge4\sqrt[4]{\dfrac{1}{16^3}}=\dfrac{1}{2}\)
\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{1}{4}}=1\)
Suy ra : \(C\ge\dfrac{1}{2}+\dfrac{3}{4}.1-\dfrac{1}{8}=\dfrac{9}{8}\)
" = " \(\Leftrightarrow x=\dfrac{1}{2}\)
Tìm giá trị lớn nhất (GTNN) của các biểu thức sau:
A= \(\dfrac{4+5\left|1-2x\right|}{7}\)
B= \(\dfrac{x^2+4x-6}{3}\)
C= \(\dfrac{5}{x^2-2x+3}\)
Tìm GTNN và GTLN của
a) A=\(\dfrac{2x-1}{x^2+2}\)
b) B=\(\dfrac{-3-4x}{x^2+1}\)
c) C=\(\dfrac{2x^2+5}{2x^2+1}\)
d) D=\(\dfrac{4x+3}{x^2+1}\)
d/tìm Min:
D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-\(\dfrac{x^2+1}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-1>=-1
=>Min D=-1.Dấu = xảy ra khi x=-2
TÌM Max:
D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)=4-\(\dfrac{\left(2x-1\right)^2}{x^2+1}\)=<4
=>Max D=4.Dấu = xảy ra khi x=\(\dfrac{1}{2}\)
các câu kia tương tự nha bạn.chúc bạn học tốt
Rảnh rỗi sinh nông nỗi , tui lm câu a nha!
a) A = \(\dfrac{2x-1}{x^2+2}\) = \(\dfrac{\left(x^2+2x+1\right)-\left(x^2+2\right)}{x^2+2}\)
= \(\dfrac{\left(x+1\right)^2}{x^2+2}-\dfrac{x^2+2}{x^2+2}\) = \(\dfrac{\left(x+1\right)^2}{x^2+2}\) \(-1\)
Vì \(x^2+2>0\) với mọi x => \(\dfrac{\left(x+1\right)^2}{x^2+2}\) >= 0 với mọi x
=> Dấu = xảy ra <=> x + 1 = 0 => x = -1
=> GTNN của A = -1 khi x = -1
Tìm GTNN:
a) \(\dfrac{x^2+x+1}{x^2+2x+1}\)
b) \(\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
c) \(\dfrac{x^2-4x+1}{x^2+9}\)
\(\text{a) }\dfrac{x^2+x+1}{x^2+2x+1}\\ =\dfrac{x^2+2x-x+1+1-1}{x^2+2x+1}\\ =\dfrac{\left(x^2+2x+1\right)-\left(x+1\right)+1}{x^2+2x+1}\\ =\dfrac{x^2+2x+1}{x^2+2x+1}-\dfrac{x+1}{\left(x+1\right)^2}+\dfrac{1}{\left(x+1\right)^2}\\ =1-\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}\left(1\right)\\ Đặt\text{ }\dfrac{1}{x+1}=y\\ \Rightarrow\left(1\right)=1-y+y^2\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{ 1}{x+1}=\dfrac{1}{2}\\ \Leftrightarrow x+1=2\\ \Leftrightarrow x=1\\ Vậy\text{ }GTNN\text{ }của\text{ }phân\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=1\)
\(\text{b) }\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\\ =\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\left(1\right)\\ Đặt\text{ }-\dfrac{1}{2x-1}=y\\ \Rightarrow\left(1\right)=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
tìm GTNN
\(x+\dfrac{4x+2}{2x-1}\)
với \(x\ge\dfrac{1}{2}\)(điều kiện chắc vậy)
A=\(x+\dfrac{4x+2}{2x-1}=\dfrac{x\left(2x-1\right)}{2x-1}+\dfrac{4x+2}{2x-1}\)
\(=\dfrac{2x^2-x+4x+2}{2x-1}=\dfrac{2x^2+3x+2}{2x-1}\)
\(=>2A=\)\(\dfrac{4x^2+6x+4}{2x-1}\)
\(=\dfrac{4x^2-4x+1+10x+3}{2x-1}\)
\(=\dfrac{\left(2x-1\right)^2+5\left(2x-1\right)+8}{2x-1}=2x-1+\dfrac{8}{2x-1}+5\)
\(\ge2\sqrt{8}+5\)
=>\(A\ge\dfrac{2\sqrt{8}+5}{2}=\sqrt{8}+\dfrac{5}{2}\)
Dấu"=" xảy ra<=>\(x=\dfrac{1}{2}\left(1+2\sqrt{2}\right)\)(TM)
Vậy min A=\(\sqrt{8}+\dfrac{5}{2}\)
Thực hiện phép tính: (câu nào khó quá bỏ qua)
a) \(\dfrac{x^2+2}{x^3+1}\)-\(\dfrac{1}{x+1}\)
b)\(\dfrac{x}{x^2-2x}\)-\(\dfrac{x^2+4x}{x^3-4x}\)-\(\dfrac{2}{x^2+2x}\)
c)\(\dfrac{1}{2-2x}\)-\(\dfrac{3}{2+2x}\)+\(\dfrac{2x}{x^2-1}\)
d) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
À mà nay sinh nhật tui á
a:
ĐKXĐ: x<>-1
\(\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\)
\(=\dfrac{x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\)
\(=\dfrac{x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x}{\left(x+1\right)\left(x^2-x+1\right)}\)
b: \(\dfrac{x}{x^2-2x}-\dfrac{x^2+4x}{x^3-4x}-\dfrac{2}{x^2+2x}\)
\(=\dfrac{x}{x\left(x-2\right)}-\dfrac{x\left(x+4\right)}{x\left(x^2-4\right)}-\dfrac{2}{x\left(x+2\right)}\)
\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)
\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\dfrac{1}{x}+\dfrac{1}{x+2}\)
\(=\left(\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}+\dfrac{1}{x+2}\right)-\dfrac{1}{x}\)
\(=\dfrac{x+2-x-4+x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x}\)
\(=\dfrac{x-4}{x^2-4}-\dfrac{1}{x}\)
\(=\dfrac{x^2-4x-x^2+4}{x\left(x^2-4\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)
c: \(\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\)
\(=\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x-1-3x+3+4x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x^2-1}\)
d:
\(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)