Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Nguyễn Thị
Xem chi tiết
Vân Nguyễn Thị
30 tháng 10 2021 lúc 20:23

Nhanh nha gianroi

Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 22:20

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

crewmate
Xem chi tiết
Minh Hiếu
8 tháng 8 2021 lúc 16:35

a+b-c/a+b-c + 2c/a+b-c = a-b-c/a-b-c + 2c/a-b-c

suy ra 2c/a+b-c = 2c/a-b-c

Dấu = xảy ra khi c=0

anbe
8 tháng 8 2021 lúc 16:39

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) 

\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\) 

\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)

\(\Leftrightarrow\left(b+c-b+c\right)\left(b+c+b-c\right)=0\)

\(\Leftrightarrow4bc=0\)

Do b\(\ne\) 0\(\Rightarrow c=0\)

Vậy c=0 thì thỏa tỉ lệ thức (đcpcm)

Lưu Võ Tâm Như
9 tháng 8 2021 lúc 14:42

undefined

Sách Giáo Khoa
Xem chi tiết
Lưu Hạ Vy
18 tháng 4 2017 lúc 14:46

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


Thạch Nguyễn
11 tháng 7 2017 lúc 14:42

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

Hải Đăng
13 tháng 10 2018 lúc 9:09

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Theo tính chất của dãy tỉ số bằng nhau ta có

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

piojoi
Xem chi tiết
HT.Phong (9A5)
9 tháng 8 2023 lúc 18:29

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có VT:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)

\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)

VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) 

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Toru
9 tháng 8 2023 lúc 18:27

Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

Vậy...

Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Đức Trí
27 tháng 8 2023 lúc 16:03

a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)

 \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

\(\Rightarrow dpcm\)

Nguyễn Trung Hiếu
27 tháng 8 2023 lúc 16:04

Thanks

Akai Haruma
27 tháng 8 2023 lúc 18:46

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk; c=dk$. Khi đó:

1.

$\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b(k+1)}{b}=k+1(1)$

$\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d(k+1)}{d}=k+1(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$

2.

$\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}(3)$

$\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}(4)$

Từ $(3); (4)\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}$ (đpcm)

Vân Nguyễn Thị
Xem chi tiết
Tô Hà Thu
30 tháng 10 2021 lúc 21:08

\(=\dfrac{11a+17b}{11c-17d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow...\)

OH-YEAH^^
30 tháng 10 2021 lúc 21:44

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

\(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11bk+17b}{3bk-4b}=\dfrac{b\left(11k+17\right)}{b\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(1\right)\)

\(\Rightarrow\dfrac{11c+17d}{3c-4d}=\dfrac{11dk+17d}{3dk-4d}=\dfrac{d\left(11k+17\right)}{d\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)

Sách Giáo Khoa
Xem chi tiết
Huyền Anh Kute
21 tháng 5 2017 lúc 20:36

a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b,

, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )

\(\Rightarrow\) \(a=b.k\)

\(c=d.k\)

Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Cô bé vui vẻ
Xem chi tiết
Lightning Farron
17 tháng 6 2017 lúc 13:32

surf trc khi hỏi

Lightning Farron
17 tháng 6 2017 lúc 13:33

surf trc khi hỏi

Đức Hiếu
17 tháng 6 2017 lúc 13:40

Bài 1:

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) (đpcm)

Chúc bạn học tốt!!!

Sách Giáo Khoa
Xem chi tiết
Phạm Khánh Linh
10 tháng 6 2017 lúc 9:29

\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc=>ab+ad=ab+bc\)

\(a\left(b+d\right)=b\left(a+c\right)\)

\(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

Đinh Thị Minh Thư
28 tháng 7 2017 lúc 12:18

đúng

Trần Quốc Lộc
29 tháng 7 2017 lúc 8:32

Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\left(ĐPCM\right)\)

Vậy \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)