Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bủh Bủh Dảk Dảk Lmao
Xem chi tiết
hoàng minh trọng
Xem chi tiết

bài 28 ý hả bn! bn nêu đề ra nha!

mk dùng sách vnen nên ko có mấy cái đó.

Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 18:11

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

LÊ NGUYỄN PHƯƠNG THẢO
12 tháng 9 2021 lúc 19:19

B=2+22+23+24+...+299+2100=2(1+22+23+24)+...+296(1+22+23+24)=2.31+26.31+...+296.31=31(2+26+...+296)⋮31

Hoàng Thị Huyền
Xem chi tiết
Minh Hiếu
8 tháng 8 2021 lúc 16:22

3) 

a)vì góc E=F=40 mà 2 góc có vị trí đồng vị 

b)vì góc F=M=40 mà 2 góc có vị trí so le ngoài 

b//c mà b//a suy ra a//c

Minh Hiếu
8 tháng 8 2021 lúc 16:26

4)

a)vì góc A1=B1 mà 2 góc có vị trí đồng vị

b)B4=B1, A3=A1

vì B1+B2=180 suy ra B2=110=B3 đối đỉnh

A2=A4=110

 

Dinz
8 tháng 8 2021 lúc 16:30

Bài 3: (gọi tạm hai góc có trong hình là E1 và F1)

a/ Ta có: \(\hat{E_1}=\hat{F_1}=40\text{°}\) 

- Hai góc ở vị trí đồng vị. Vậy:\(a\text{ // }b\)

-------------------

b/ Gọi góc đối đỉnh F1 là F2

\(F_1=F_2=40\text{°}\) (đối đỉnh)

\(F_2=M_1=40\text{°}\). Mà F2 và M1 là hai góc đồng vị

\(b\text{ // }c\)

\(a\text{ // }b\)\(b\text{ // }c\) 

Vậy: \(a\text{ // }c\)

==========

Bài 4:

a/ \(A_1=B_1=70\text{°}\text{ }\)

- Mà A1 và B1 là hai góc đồng vị. Vậy: \(a\text{ // }b\)

--------------------

b/ \(\hat{A_2}=180\text{​​}\text{°}-\hat{A_1}=130\text{°}\) (kề bù)

\(\hat{A_3}=\hat{A_1}=70\text{°}\)(đối đỉnh)

\(\hat{A_4}=\hat{A_2}=130\text{°}\) (đối đỉnh)

\(\hat{B_2}=180\text{°}-\hat{A_1}=130\text{°}\) (trong cùng phía)

\(\hat{B_3}=\hat{B_2}=130\text{°}\) (đối đỉnh)

\(\hat{B_4}=\hat{A_1}=70\text{°}\) (so le trong)

Chúc bạn học tốt

Nguyễn Minh Hùng
Xem chi tiết
An Thy
23 tháng 6 2021 lúc 10:17

1. \(\dfrac{2}{2-\sqrt{3}}=\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}=\dfrac{4+2\sqrt{3}}{4-3}=4+2\sqrt{3}\)

2. \(\dfrac{1}{\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}=\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\)

\(=\sqrt{3}-\sqrt{2}\)

3. \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{7}-\sqrt{5}}{7-5}\)

\(=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

4. \(\dfrac{1}{5-2\sqrt{6}}=\dfrac{5+2\sqrt{6}}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}=\dfrac{5+2\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}=\dfrac{5+2\sqrt{6}}{25-24}\)

\(=5+2\sqrt{6}\)

5. \(\dfrac{3\sqrt{5}}{2\sqrt{5}-1}=\dfrac{3\sqrt{5}\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}\right)+1}=\dfrac{30+3\sqrt{5}}{\left(2\sqrt{5}\right)^2-1^2}=\dfrac{30+3\sqrt{5}}{20-1}\)

\(=\dfrac{30+3\sqrt{5}}{19}\)

6. \(\dfrac{12}{3-\sqrt{3}}=\dfrac{12}{\sqrt{3}\left(\sqrt{3}-1\right)}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}=\dfrac{4\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(\dfrac{12+4\sqrt{3}}{\left(\sqrt{3}\right)^2-1^2}=\dfrac{2\left(6+2\sqrt{3}\right)}{3-1}=6+2\sqrt{3}\)

7. \(\dfrac{5\sqrt{2}}{\sqrt{5}+\sqrt{3}}=\dfrac{5\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{5\sqrt{10}-5\sqrt{6}}{\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2}\)

\(=\dfrac{5\sqrt{10}-5\sqrt{6}}{5-3}=\dfrac{5\sqrt{10}-5\sqrt{6}}{2}\)

8. \(\dfrac{18}{\sqrt{7}-1}=\dfrac{18\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}=\dfrac{18\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^2-1^2}=\dfrac{18\left(\sqrt{7}+1\right)}{7-1}\)

\(=3\left(\sqrt{7}+1\right)=3\sqrt{7}+3\)

9. \(\dfrac{9}{2\sqrt{3}-3}=\dfrac{9\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}=\dfrac{9\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^2-3^2}=\dfrac{9\left(2\sqrt{3}+3\right)}{12-9}\)

\(3\left(2\sqrt{3}+3\right)=6\sqrt{3}+9\)

10. \(\dfrac{1}{2\sqrt{3}-3}=\dfrac{2\sqrt{3}+3}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}=\dfrac{2\sqrt{3}+3}{\left(2\sqrt{3}\right)^2-3^2}=\dfrac{2\sqrt{3}+3}{12-9}\)

\(=\dfrac{2\sqrt{3}+3}{3}\)

11. \(\dfrac{3}{2\sqrt{2}-\sqrt{5}}=\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}-\sqrt{5}\right)\left(2\sqrt{2}+\sqrt{5}\right)}=\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)

\(=\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{8-5}=2\sqrt{2}+5\)

12. \(\dfrac{1+\sqrt{2}}{1-\sqrt{2}}=\dfrac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\dfrac{\left(1+\sqrt{2}\right)^2}{1^2-\left(\sqrt{2}\right)^2}=\dfrac{3+2\sqrt{2}}{-1}\)

\(=-3-2\sqrt{2}\)

13. \(\dfrac{\sqrt{3}+2}{2-\sqrt{3}}=\dfrac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{\left(\sqrt{3}+2\right)^2}{2^2-\left(\sqrt{3}\right)^2}=\dfrac{7+4\sqrt{3}}{4-3}=7+4\sqrt{3}\)

14. \(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}=\dfrac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\dfrac{\left(3+\sqrt{5}\right)^2}{3^2-\left(\sqrt{5}\right)^2}=\dfrac{14+6\sqrt{5}}{9-5}\)

\(=\dfrac{7+3\sqrt{5}}{2}\)

15. giống câu 5

16. \(\dfrac{\sqrt{5}+1}{2\sqrt{5}-4}=\dfrac{\left(\sqrt{5}+1\right)\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\left(2\sqrt{5}+4\right)}=\dfrac{14+6\sqrt{5}}{\left(2\sqrt{5}\right)^2-4^2}=\dfrac{14+6\sqrt{5}}{4}\)

\(=\dfrac{7+3\sqrt{5}}{2}\)

Nguyễn Ngọc Lộc
23 tháng 6 2021 lúc 10:00

- Sử dụng liên hợp thôi nha mình làm tham khảo câu 1, 4 các câu khác tương tự .

\(1,\dfrac{2}{2-\sqrt{3}}=\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4+2\sqrt{3}}{4-3}=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)

\(4,\dfrac{1}{5-2\sqrt{6}}=\dfrac{5+2\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}=5+2\sqrt{6}\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2023 lúc 15:16

Có 3 loại hình thức nhận thưởng: sách+sổ, sách+bút, sổ+bút

Gọi số học sinh nhận được phần thưởng thuộc 3 loại nói trên lần lượt là x;y;z

\(\Rightarrow\left\{{}\begin{matrix}x+y=9\\x+z=8\\y+z=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=5\end{matrix}\right.\)

Hay chúng ta có 3 bạn nhận thưởng sách+sổ, 6 bạn nhận sách+bút, 5 bạn nhận sổ+bút

Như vậy có 3 TH để An và Bình nhận thưởng giống nhau là:

- An Bình cùng nhận sách sổ: còn lại 12 bạn, chọn 6 bạn nhận sách bút có \(C_{12}^6\) sách, còn lại 6 bạn, chọn 5 bạn nhận sổ bút có \(C_6^5\) cách, còn 1 bạn, chọn 1 bạn nhận sách sổ có \(C_1^1\) cách \(\Rightarrow C_{12}^6.C_6^5.C_1^1\) cách

- An Bình nhận sách bút: tương tự như trên ta có \(C_{12}^3.C_9^4.C_5^5\) cách

- An Bình nhận bút sổ: \(C_{12}^3.C_9^6.C_3^3\) cách

Tổng: \(51744\) cách

HT.Phong (9A5)
27 tháng 2 2023 lúc 15:11

Gọi a là số học sinh nhận được sách và sổ ; b là số học sinh nhận được sách và bút ; c là số học sinh nhận được sổ và bút. Ta có : \(a+b=9,a+c=8,b+c=11\)

Giải ra ta được \(a=3,b=6,c=5\)

Xét ba trường hợp sau : TH 1 : An và Bình cùng nhận được sách và sổ. Có 3 người cùng nhận được sách và sổ, trong đó có An và Bình. Vì vậy cần chọn ra 1 người trong só 12 học sinh để nhận sách và sổ suy ra có \(C_{12}^1\) cách chọn. Sau đó chọn ra 6 em trong số 11 học sinh còn lại để nhận sách và bút và 5 học sinh còn lại nhận sổ và bút. Vậy số kết quả trong TH này là: \(C_{12}^1.C^6_{12}\)

TH 2 : An và Bình cùng nhận được sách và bút. Lập luận tương tự TH 1 ta có số kết quả trong TH này là : \(C_{12}^4.C_8^3\)

TH 3 : An và Bình cùng nhận được sổ và bút. Số kết quả trong TH này là :\(C_{12}^3.C_9^3\). . Vậy có: \(C_{12}^1.C_{12}^6+C_{12}^4.C_8^3+C_{12}^3.C_9^3=51744\) cách phát phần thưởng thỏa mãn bài toán. 

Đáp án: \(51744\) 

Bạch Dạ
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:14

11c.

Từ đề bài ta có:

\(\left\{{}\begin{matrix}\dfrac{16a-b^2}{4a}=\dfrac{9}{2}\\16a+4b+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2b^2=-4a\\b=-4a-1\end{matrix}\right.\)

\(\Rightarrow2b^2-b=1\Leftrightarrow2b^2-b-1=0\Rightarrow\left[{}\begin{matrix}b=1\Rightarrow a=-\dfrac{1}{2}\\b=-\dfrac{1}{2}\Rightarrow a=-\dfrac{1}{8}\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=-\dfrac{1}{2}x^2+x+4\\y=-\dfrac{1}{8}x^2-\dfrac{1}{2}x+4\end{matrix}\right.\)

Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:17

4f.

Từ đề bài ta có:

\(\left\{{}\begin{matrix}1+b+c=0\\\dfrac{4c-b^2}{4}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-b-1\\c=\dfrac{b^2}{4}-1\end{matrix}\right.\)

\(\Rightarrow\dfrac{b^2}{4}+b=0\)

\(\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow c=-1\\b=-4\Rightarrow c=3\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=x^2-1\\y=x^2-4x+3\end{matrix}\right.\)

DAI HUYNH
Xem chi tiết
hoàng văn nghĩa
30 tháng 12 2022 lúc 15:32

what is her mother going to prepare for her bỉthdat party

hoàng văn nghĩa
30 tháng 12 2022 lúc 15:36

there are three sticks of butter in the cupboard

hoàng văn nghĩa
30 tháng 12 2022 lúc 15:41

i have enough food for the first three day of your stay

Vy trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:25

Bài 4: 

a: \(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\)

=-8