Chứng minh rằng nếu \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\) (b;d > 0) thì \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)<\(\dfrac{c}{d}\)
Chứng minh rằng: Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Cho phân số \(\dfrac{a}{b}\) . Chứng minh rằng :
Nếu \(\dfrac{a-x}{b-y}=\dfrac{a}{b}\) thì \(\dfrac{x}{y}=\dfrac{a}{b}\)
\(\dfrac{a-x}{b-y}=\dfrac{a}{b}\)
\(\Rightarrow\dfrac{a-x}{a}=\dfrac{b-y}{b}\)
\(\Rightarrow1-\dfrac{x}{a}=1-\dfrac{y}{b}\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{a}{b}\)
Chứng minh rằng nếu \(\dfrac{a}{b}\)=\(\dfrac{b}{d}\) thì \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{d}=k\Leftrightarrow a=bk;b=dk\Leftrightarrow a=bk=dk^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{d}=\dfrac{dk^2}{d}=k^2\\\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{d^2k^4+d^2k^2}{d^2k^2+d^2}=\dfrac{d^2k^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=k^2\end{matrix}\right.\\ \LeftrightarrowĐpcm\)
cho a,b,c là các số thực thỏa man: a+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a\backslash}\).
a) chứng minh nếu a,b,c đôi một khác nhau thì a2b2c2=1
b) chứng minh rằng nếu a,b,c>0 thì a=b=c
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
\(\Leftrightarrow\dfrac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\le1\)
\(\Leftrightarrow\dfrac{ab+bc+ca+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\le1\)
\(\Leftrightarrow ab+bc+ca+12\le2\left(ab+bc+ca\right)+9\)
\(\Leftrightarrow ab+bc+ca\ge3\)
Hiển nhiên đúng do: \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)
Vì abc=1 , ta đặt \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)
Điều phải chứng minh tương đương với:
\(\dfrac{1}{2+\dfrac{x}{y}}+\dfrac{1}{2+\dfrac{y}{z}}+\dfrac{1}{2+\dfrac{z}{x}}\le1\\ \Leftrightarrow\dfrac{y}{2y+x}+\dfrac{z}{2z+y}+\dfrac{x}{2x+z}\le1\\ \Leftrightarrow\dfrac{2y}{2y+x}+\dfrac{2z}{2z+y}+\dfrac{2x}{2x+z}\le2\\ \Leftrightarrow\dfrac{x}{2y+x}+\dfrac{y}{2z+y}+\dfrac{z}{2x+z}\ge1\left(1\right)\)
Áp dụng bất đẳng thức bunhiacopxki dạng phân thức ta có:
\(\dfrac{x}{2y+x}+\dfrac{y}{2z+x}+\dfrac{z}{2x+z}=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2zx}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
=> bài toán được chứng minh
Dấu bằng xảy ra khi x=y=z=1 <=>a=b=c=1
Chứng minh rằng: nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
mọi người ơi giúp mik với, ai làm đc mik tick cho
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
Chứng minh rằng : Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì
a.\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\) b.\(\dfrac{a}{b}\)=\(\dfrac{a+c}{b+c}\) c.\(\dfrac{a}{c}\)=\(\dfrac{a-b}{c-d}\) d.\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)
a: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
d: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
hay \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
hay \(\dfrac{a}{c}=\dfrac{a-b}{c-d}\)
Chứng minh rằng nếu \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)
Theo đề bài ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a}{c}\left(1\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm\)
- Theo đề bài:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)\(=\dfrac{a+b+a-b}{c+d+c-d}\)\(=\dfrac{2a}{2c}=\dfrac{a}{c}\) (1)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)\(=\dfrac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) (2)
- Từ (1) và (2)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)( đpcm )
chứng minh rằng nếu \(\dfrac{a+2}{a-2}=\dfrac{b+3}{b-3}\)thì \(\dfrac{a}{2}=\dfrac{b}{3}\)
\(\dfrac{a+2}{a-2}=\dfrac{b+3}{b-3}\Rightarrow\dfrac{a+2}{b+3}=\dfrac{a-2}{b-3}=\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\)
Chúc bạn học tốt nhé