Bài 1: Tập hợp Q các số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Uyên

Chứng minh rằng nếu \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\) (b;d > 0) thì \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)<\(\dfrac{c}{d}\)

Nguyễn Huy Tú
18 tháng 6 2017 lúc 13:42

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+dc\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)

\(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)

Nguyễn Thanh Hằng
18 tháng 6 2017 lúc 13:47

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Lại có :

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)


Các câu hỏi tương tự
NGUYỄN THỊ THANH MAI
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Hiền Tạ Phạm
Xem chi tiết
Cherry Trần
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Cuber Việt
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Meioh Setsuna
Xem chi tiết
Thảo Trần
Xem chi tiết