Trên mặt phẳng tọa độ có (P) y=-x2 và (d) y=mx+m-2
a, Tìm m để (d) cắt (P) tại 2 điểm A(x1;y1)và B(x2:y2) thỏa mãn
(y1 +2)(y2 +2)=4(x1+1)(x2+1)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn: (x1+1)(x2+1)=0
Phương trình hoành độ giao điểm là :
\(-x^2=mx+2\)
\(\Leftrightarrow x^2+mx+2=0\)
Lại có : \(\Delta=m^2-8>0\)
Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)
\(\left(x1+1\right)\left(x2+1\right)=0\)
\(\Leftrightarrow x1x2+x1+x1+1=0\)
\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)
chúng ta sẽ lại có :
Theo định lí Vi - et ta có :
\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
b) Phương trình hoành độ giao điểm của (P) và (d):
x² = mx - m + 1
⇔ x² - mx + m - 1 = 0
∆ = m² - 4.1.(m - 1)
= m² - 4m + 4
= (m - 2)² ≥ 0 với mọi m ∈ R
⇒ Phương trình luôn có hai nghiệm
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁x₂ = m - 1 (2)
Lại có x₁ + 3x₂ = 7 (3)
Từ (1) ⇒ x₁ = m - x₂ (4)
Thay x₁ = m - x₂ vào (3) ta được:
m - x₂ + 3x₂ = 7
2x₂ = 7 - m
x₂ = (7 - m)/2
Thay x₂ = (7 - m)/2 vào (4) ta được:
x₁ = m - (7 - m)/2
= (2m - 7 + m)/2
= (3m - 7)/2
Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:
[(3m - 7)/2] . [(7 - m)/2] = m - 1
⇔ 21m - 3m² - 49 + 7m = 4m - 4
⇔ 3m² - 28m + 49 + 4m - 4 = 0
⇔ 3m² - 24m + 45 = 0
∆' = 144 - 3.45 = 9 > 0
Phương trình có hai nghiệm phân biệt:
m₁ = (12 + 3)/3 = 5
m₂ = (12 - 3)/3 = 3
Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7
a: Thay x=0 và y=2 vào (d), ta được:
1-m=2
=>m=-1
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) :y=mx-3 tham số m và Parabol (P): y=y2 . Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1,x2 thỏa mãn |x1-x2|=2
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
trên mặt phẳng tọa độ Oxy cho Parapol (P) : y=x^2 và đường thẳng d : y=x^2 -m +3
a, tìm tọa độ giao điểm của d và P khi m=1
b, tìm m để d cắt P tại 2 điểm phân biệt
c, với gtri nào của m thì P và d cắt nhau tại hai điểm phân biệt M(x1;y1); N(x1;x2) thỏa mãn y1+y2=3
a: Sửa đề; (d): y=x-m+3
Khi m=1 thì (d): y=x-1+3=x+2
PTHĐGĐ là:
x^2=x+2
=>x^2-x-2=0
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
Khi x=2 thì y=2^2=4
Khi x=-1 thì y=(-1)^2=1
b: PTHĐGĐ là:
x^2-x+m-3=0
Δ=(-1)^2-4(m-3)
=1-4m+12=-4m+13
Để (d) cắt (P) tại hai điểm phân biệt thì -4m+13>0
=>m<13/4
c: y1+y2=3
=>x1^2+x2^2=3
=>(x1+x2)^2-2x1x2=3
=>1-2(m-3)=3
=>2(m-3)=-2
=>m-3=-1
=>m=2(nhận)
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x2 và đường thẳng (d): y=mx+5.
CMR:Với mọi giá trị của tham số m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2.Tìm m để x12-9-mx2
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=mx+5\)
\(x^2-mx-5=0\)
\(\Delta=m^2+20\)
Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt
Câu tìm m bạn ghi rõ đề ra nhá
trong mặt phẳng tọa độ oxy cho parabol (p) y=3/2x^2 và đường thẳng (d):y=mx+2
a) vẽ đồ thị (p)
b) tìm tất cả các giá trị của m để (d)cắt (p) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1^2 +x2^2 -x1x2 =40
b: Phương trình hoành độ giao điểm là:
\(\dfrac{3}{2}x^2-mx-2=0\)
\(\Leftrightarrow3x^2-2mx-4=0\)
a=3; b=-2m; c=-4
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)
=>m=9 hoặc m=-9
trong mặt phẳng tọa độ Oxy, cho (P): y=x2 và đường thẳng (d): y=mx+8
a) Chứng minh (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ là x1 và x2 với mọi giá trị của m
b) Tìm tất cả các giá trị của m để x1 + √x2 = 0
MỜI CÁC CAO NHÂN Ạ!!!
a) pt hoành độ giao điểm: \(x^2-mx-8=0\)
\(ac=1.-8=-8< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=-8\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-8< 0\Rightarrow x_1,x_2\) trái dấu
Ta có: \(x_1+\sqrt{x_2}=0\Rightarrow x_1=-\sqrt{x_2}< 0\Rightarrow x_2>0\)
Thế vào (2):\(-x_2\sqrt{x_2}=-8\Rightarrow x_2\sqrt{x_2}=8\Leftrightarrow\left(\sqrt{x_2}\right)^3=8\)
\(\Rightarrow\sqrt{x_2}=2\Rightarrow x_2=4\Rightarrow x_1=-2\Rightarrow x_1+x_2=2=m\)
Trong mặt phẳng tọa độ cho đường thẳng và parabol
b)Tìm m để đường thẳng d cắt p tại 2 điểm có hoành độ x1,x2 thoả mãn:
2y1+4mx2-2x^2-3<0
Trong mặt phẳng tọa độ Oxy, cho đường thắng d: y= 2(m + 1)x – 2m và parabol P: y = x^2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm có hoành độ x1,x2 sao cho √x1 + √x2= √2