trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Trong mặt phẳng tọa độ cho đường thẳng và parabol
b)Tìm m để đường thẳng d cắt p tại 2 điểm có hoành độ x1,x2 thoả mãn:
2y1+4mx2-2x^2-3<0
cho đường thẳng (d):y=-mx+m+2 và parabol (p):y=x^2 a,Tìm tọa độ giao điểm của (d)và(p) khi m=2 b, Tìm các giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1;x2 sao cho x1^2+x2^2=7
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x2 và đường thẳng (d): y=mx+5.
CMR:Với mọi giá trị của tham số m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2.Tìm m để x12-9-mx2
2) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng
(d): y = kx + 1 . Giả sử (d) cắt (P) tại E và F, gọi hoành độ của E và F lần lượt là x1 và x2. Tìm m để /x1+x2/=3k-2
Trong mặt phẳng tọa độ Oxy Cho parabol p = yx² và đường thẳng dy = mx + 3 ( m là than
số )
a) tìm tọa độ giao điểm của P và D Khi m = 2b) tìm m Vẽ đường thẳng d cắt parabol p tại 2 điểm phân biệt có hoành độ x1 x2 thỏa mãn 1 $\frac{1}{x¹}$ + $\frac{1}{x²}$ = $\frac{3}{2}$
trong mặt phẳng tọa độ Oxy cho đường thẳng(d);y=mx.3 tham số m và parabol y=x mũ hai
a, tìm m để đường thẳng (d) đi qua điểm A(1;0)
b, tìm m để đường thẳng (d)cắt parabol tại hai điểm phân biệt có hoành độ lần lượt là x1 và x hai thỏa mãm /x1 - x hai/ bằng hai
Trong mặt phẳng toạ độ Oxy , cho parabol (P): y= x2 và đường thẳng (d):y= (2m-3)x-m2+3m. a) Chứng minh đường thẳng(d) luôn cắt (P)tại hai điểm phân biệt có hoành độ là x1,x2. b) Tìm tất cả các giá trị nguyên của m để trị tuyệt đối x1+ trị tuyệt đối x2 = 3
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : y = m x + 5.
b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol P : y = x 2 tại hai điểm phân biệt có hoành độ lần lượt là x 1 , x 2 (với x 1 < x 2 ) sao cho x 1 > x 2 .