Giá trị của \(\dfrac{6}{\sqrt{7}-1}\) bằng :
(A) \(\sqrt{7}-1\) (B) \(1-\sqrt{7}\) (C) \(-\sqrt{7}-1\) (D) \(\sqrt{7}+1\)
Hãy chọn đáp án đúng ?
chọn đáp án đúng và cách giải
giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=4\sqrt{sinx+3}-1\) lần lượt là:
A. \(\sqrt{2}\) và 2
B. 2 và 4
C. \(4\sqrt{2}\) và 8
D. \(4\sqrt{2}-1\) và 7
sinx nằm trong khoảng (-1,1) vậy GTLN làD
\(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\) (ĐK x>0; x\(\ne9\))
a)Rút gọn A và B
b) Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
Tính giá trị S = \(\dfrac{1}{a^7}+\dfrac{1}{b^7}\) với a = \(\dfrac{\sqrt{6}+\sqrt{2}}{2}\);b= \(\dfrac{\sqrt{6}-\sqrt{2}}{2}\)
Lời giải:
$a+b=\frac{\sqrt{6}+\sqrt{2}+\sqrt{6}-\sqrt{2}}{2}=\sqrt{6}$
$ab=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2.2}=\frac{6-2}{4}=1$
Khi đó:
$S=\frac{1}{a^7}+\frac{1}{b^7}=\frac{a^7+b^7}{a^7b^7}$
$=\frac{a^7+b^7}{(ab)^7}=\frac{a^7+b^7}{1}=a^7+b^7$
$=(a^3+b^3)(a^4+b^4)-a^3b^3(a+b)$
$=(a^3+b^3)(a^4+b^4)-(a+b)$
Ta có:
$a^3+b^3=(a+b)^3-3ab(a+b)=(\sqrt{6})^3-3\sqrt{6}=6\sqrt{6}-3\sqrt{6}=3\sqrt{6}$
$a^4+b^4=(a^2+b^2)^2-2a^2b^2=(a^2+b^2)^2-2$
$=[(a+b)^2-2ab]^2-2=(6-2)^2-2=14$
$S=3\sqrt{6}.14-\sqrt{6}=41\sqrt{6}$
Cho a, b, c thỏa mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7;a+b+c=23;\sqrt{abc}=3\). Tính giá trị của biểu thức: \(H=\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}\)
Tìm giá trị của x:
a) \(\sqrt{2x}< \dfrac{1}{3}\)
b) \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)
c) \(\sqrt{-2x+1}>7\)
d) \(\sqrt{2x-1}\le\dfrac{3}{2}\)
a.ĐKXĐ: \(x\ge0\)
\(\sqrt{2x}< \dfrac{1}{3}\) \(\Leftrightarrow2x< \dfrac{1}{3}\Leftrightarrow6x< 1\Leftrightarrow x< \dfrac{1}{6}\)
b. ĐKXĐ: \(x\ge\dfrac{1}{6}\)
\(\sqrt{-3x+\dfrac{1}{2}}\ge5\Leftrightarrow-3x+\dfrac{1}{2}\ge25\Leftrightarrow x=-\dfrac{49}{6}\)
c. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{-2x+1}>7\) \(\Leftrightarrow-2x+1>49\Leftrightarrow x=-24\)
d. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}\le\dfrac{3}{2}\Leftrightarrow2x-1\le\dfrac{9}{4}\Leftrightarrow x=\dfrac{13}{8}\)
a: Ta có: \(\sqrt{2x}< \dfrac{1}{3}\)
\(\Leftrightarrow2x< \dfrac{1}{9}\)
\(\Leftrightarrow x< \dfrac{1}{18}\)
Kết hợp ĐKXĐ, ta được: \(0\le x< \dfrac{1}{18}\)
b: Ta có: \(\sqrt{-3x+\dfrac{1}{2}}\ge5\)
\(\Leftrightarrow-3x+\dfrac{1}{2}\ge25\)
\(\Leftrightarrow-3x\ge\dfrac{49}{2}\)
hay \(x\le-\dfrac{49}{6}\)
c: Ta có: \(\sqrt{-2x+1}>7\)
\(\Leftrightarrow-2x+1>49\)
\(\Leftrightarrow-2x>48\)
hay x<-24
A= \(\dfrac{3}{\sqrt{7}-2}\)+ \(\sqrt{\left(\sqrt{7}-3\right)^2}\)
B= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\)
a) Rút gọn A, B
b) Tìm các giá trị của x để B<A
\(a,\) Rút gọn
\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)
\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)
\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)
\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)
\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)
\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=5\)
Vậy \(A=5\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}-1\)
Vậy \(B=\sqrt{x}-1\)
\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)
\(\Leftrightarrow\sqrt{x}< 6\)
\(\Leftrightarrow x< 36\)
Tính giá trị các biểu thức sau
1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
2.\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+\dfrac{1}{5\sqrt{4}+4\sqrt{5}}+\dfrac{1}{6\sqrt{5}+5\sqrt{6}}+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\)
giúp mk vs ạ
\(1.\text{ }\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\left(\sqrt{k}+\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ \\ =\sqrt{9}-\sqrt{1}=2\)
\(2.\text{ }\dfrac{1}{\left(k+1\right)\sqrt{k}+\sqrt{k+1}k}=\dfrac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\\ =\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\\ \Rightarrow\text{ }\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{7}}\\ \text{ }1-\dfrac{1}{\sqrt{7}}\)
1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}=\dfrac{1+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}=\sqrt{9}-1=3-1=2\)
3) Hãy ghi đáp án và lời giải cho câu hỏi sau:
Cho △ABC có \(b=7;c=5;\cos A=\dfrac{3}{5}\). Đường cao \(h_a\) của △ABC là:
\(A.\dfrac{7\sqrt{2}}{2}\)
\(B.8\)
\(C.8\sqrt{3}\)
\(D.80\sqrt{3}\)
Giá trị 6 7 - 1 bằng
A. 7 -1 B. 1 - 7 C. - 7 -1 D. 7 +1
Hãy chọn đáp án đúng.