Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a,b,c >0 tm abc=1, C/m
\(\dfrac{1}{\sqrt{a^5+b^2+ab+6}}+\dfrac{1}{\sqrt{b^5+c^2+bc+6}}+\dfrac{1}{\sqrt{c^5+a^2+ca+6}}\le1\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge1\)
chứng minh rằng \(\dfrac{a+b}{\sqrt{ab+c}}+\dfrac{b+c}{\sqrt{bc+a}}+\dfrac{c+a}{\sqrt{ca+b}}\ge3\sqrt[6]{abc}\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
Ai biết bài này giải hộ mình với
a) Rút gọn biểu thức A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
b) Cho x,y,z thỏa mãn: xy+yz+xz=1
Hãy tính giá trị biểu thức:A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)Cảm ơn
Cho 3 số dương a,b,c thỏa mãn: abc+b+a=3ab. Tìm giá trị nhỏ nhất của biểu thức:
Q=\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{a}{ac+c+1}}+\sqrt{\dfrac{b}{bc+c+1}}\).