\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a, b, c à số dương thỏa mãn: ab+bc+ca=1. Tìm \(P_{min}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\sqrt{\dfrac{1}{a^2}+1}-\sqrt{\dfrac{1}{b^2}+1}-\sqrt{\dfrac{1}{c^2}+1}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
cho a,b,c không âm thỏa mãn a+b+c=3. tìm GTNN của \(P=\sqrt{a^2+b^2+c^2}+\dfrac{ab+bc+ca}{2}+\dfrac{1}{a^2+b^2++c^2}\)
Bài 1:
a , Cho a , b là các số dương . C/m: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)
b, Cho a , b , c là các số dương thoả mãn a+b+c+ab+bc+ca=6abc
C/m: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
Bài 2:a, Cho a, b ,c là các số thực không âm thỏa mãn a+b+c=1
C/m: \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
b,C/m: \(\dfrac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+2c\right)}+\sqrt{c\left(c+2a\right)}}\ge\dfrac{1}{2}\)
Bài 3: Cho a , b, c> 0 thỏa mãn abc=1. Tìm max của:
\(P=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)