Tìm x biết :
a) 21 + 3 . x = 39
b) 2x - \(\dfrac{1}{2}\)= \(\dfrac{-9}{10} \): 0,2
làm đầy đủ theo các bước nhé
Tìm x biết :
a) \(^{\dfrac{4}{9}+x=\dfrac{5}{3}}\)
b)\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
c) \(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
d)\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
a)
\(\frac{4}{9} + x = \frac{5}{3}\)
=> \(x = \frac{5}{3}-\frac{4}{9}\)
=> \(x = \) \(\frac{11}{9}\)
Vậy \(x = \dfrac{11}{9}\)
b)
\(\dfrac{3}{4} .x = \dfrac{-1}{2}\)
=> \(x = \dfrac{-1}{2} : \dfrac{3}{4}\)
=> \(x = \dfrac{-2}{3}\)
Vậy \(x = \dfrac{-2}{3}\)
c)
\( \dfrac{3}{7}+ \dfrac{5}{7}:x = \dfrac{1}{3}\)
=> \(\dfrac{5}{7}:x = \dfrac{1}{3}-\) \( \dfrac{3}{7}\)
=> \(\dfrac{5}{7}:x = \dfrac{-2}{21}\)
=> \(x = \dfrac{5}{7}:\dfrac{-2}{21}\)
=> \(x = \dfrac{-15}{2}\)
Vậy \(x = \dfrac{-15}{2}\)
d)
\(3\dfrac{1}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \(\dfrac{13}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \( |2x - \dfrac{5}{12} | =\dfrac{13}{4} : \dfrac{39}{16}\)
=> \(|2x-\dfrac{5}{12} |= \dfrac{4}{3}\)
=> \(\left[\begin{matrix} 2x - \dfrac{5}{12} = \dfrac{4}{3}\\ 2x - \dfrac{5}{12} = \dfrac{4}{3}\end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{-4}{3}+\dfrac{5}{12}\\ 2x = \dfrac{-4}{3}+\dfrac{5}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{7}{4}\\ 2x = \dfrac{-11}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} x = \dfrac{7}{8}\\ x = \dfrac{-11}{24} \end{matrix}\right.\)
Vậy \(x \in \) { \(\dfrac{7}{8} ; \dfrac{-11}{24}\) }
Cho \(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\)
a ) Rút gọn B
b ) Tính B tại x thỏa mãn |2x+1|=5
c ) Tìm x để \(B=-\dfrac{3}{5}\)
d ) Tìm x để B < 0
`đk:x ne +-3,x ne -2`
`B=(21/(x^2-9)-(x-4)/(3-x)-(x-1)/(3+x)):(1-1/(x+3))`
`=(21/(x^2-9)+(x-4)/(x-3)-(x-1)/(x+3)):((x+3-1)/(x+3))`
`=((21+x^2-x-12-x^2+4x-3)/((x-3)(x+3))):(x+2)/(x+3)`
`=(3x+6)/((x-3)(x+3))*(x+3)/(x+2)`
`=(3x+6)/((x-3)(x+2))`
`=3/(x-3)`
`b)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(tm)\\x=-3(l)\end{array} \right.\)
`=>B=3/(2-3)=-3`
`c)B=-3/5`
`<=>3/(x-3)=3/(-5)`
`<=>x-3=-5`
`<=>x=-2(l)`
`d)B<0`
`<=>3/(x-3)<0`
Mà `3>0`
`=>x-3<0<=>x<3`
a) đk: \(x\ne\pm3\)
\(B=\left[\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right]:\left(\dfrac{x+3-1}{x+3}\right)\)
= \(\left[\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\dfrac{x+2}{x+3}\)
= \(\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}\)
= \(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b) Để \(\left|2x+1\right|=5\)
<=> \(\left[{}\begin{matrix}2x+1=5< =>x=2\left(c\right)\\2x+1=-5< =>x=-3\left(l\right)\end{matrix}\right.\)
Thay x = 2, ta có;
B = \(\dfrac{3}{2-3}=-3\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3}{x-3}=\dfrac{-3}{5}\)
<=> x - 3 = -5
<=> x = -2
d) Để B < 0
<=> \(\dfrac{3}{x-3}< 0\)
<=> x - 3 < 0
<=> x < 3
a)\(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\\ =\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x+3}\)
\(=\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b)\(\left|2x+1\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\left(loại\right)\end{matrix}\right.\)
với x=2 gt của B là
\(B=\dfrac{3}{2-3}=-3\)
c)\(B=\dfrac{3}{x-3}=-\dfrac{3}{5}\Leftrightarrow x-3=-5\Leftrightarrow x=-2\)
d) \(B=\dfrac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
tự kết luận mỗi câu
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
Tìm x
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
`=> (x-3)5 = (2x+1)3`
`=> 5x-15 = 6x+3`
`=> 5x-6x = 15+3`
`=> -x=18`
`=> x=-18`
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
`=> (x+1)x = 22*6`
`=> (x+1)x = 132`
`=> x^2 + x = 132`
`=> x^2+x-132=0`
`=> (x-11)(x+12)=0`
`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
`=> (2x-1)x = 2*5`
`=> 2x^2 - x =10`
`=> 2x^2 - x - 10 =0`
`=> 2x^2 + 4x - 5x - 10 =0`
`=> (2x^2 + 4x) - (5x+10)=0`
`=> 2x(x+2) - 5(x+2)=0`
`=> (2x-5)(x+2)=0`
`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
`=> (2x-1)(2x+1)=21*3`
`=> 4x^2 + 2x - 2x - 1 = 63`
`=> 4x^2 - 1=63`
`=> 4x^2 - 1 - 63=0`
`=> 4x^2 - 64 = 0`
`=> 4(x^2 - 16)=0`
`=> 4(x^2 + 4x - 4x - 16)=0`
`=> 4[(x^2+4x)-(4x+16)]=0`
`=> 4[x(x+4)-4(x+4)]=0`
`=> 4(x-4)(x+4)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
`=> (2x+1)(x+1) = 9*5`
`=> (2x+1)(x+1)=45`
`=> 2x^2 + 2x + x + 1 = 45`
`=> 2x^2 + 3x + 1 =45`
`=> 2x^2 + 3x + 1 - 45 =0`
`=> 2x^2+3x-44=0`
`=> 2x^2 + 11x - 8x - 44=0`
`=> (2x^2 +11x) - (8x+44)=0`
`=> x(2x+11) - 4(2x+11)=0`
`=> (x-4)(2x+11)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)
Tìm x, biết:
a) \(\dfrac{3}{7}\)x - \(\dfrac{2}{3}\)x = \(\dfrac{10}{21}\)
b) \(\dfrac{7}{35}\) : (x - \(\dfrac{1}{3}\)) = \(-\dfrac{2}{25}\)
c) 3.(x - \(\dfrac{1}{2}\)) - 5. (x + \(\dfrac{3}{5}\)) = -x + \(\dfrac{1}{5}\)
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
a,73x−32x=2110⇒x(73−32)=2110⇒x.−215=2110⇒x=−2b,357:(x−31)=−252⇒51:(x−31)=−252⇒x−31=−25⇒x=−613c,3.(x−21)−5.(x+53)=−x+51⇒3x−23−5x+5=−x+51
Tìm x, biết:
a) \(\dfrac{3}{7}\)x - 0,4 = \(\dfrac{-17}{35}\)
b) 0,2. (x - 3) + 2,4= 10
c) (x : 2,2) . \(\dfrac{1}{6}\) = \(\dfrac{-3}{8}\) . (0,5 - \(1\dfrac{3}{5}\))
a, \(\dfrac{3}{7}\)\(x\) - 0,4 = - \(\dfrac{17}{35}\)
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{17}{35}\) + 0,4
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{3}{35}\)
\(x\) = - \(\dfrac{3}{35}\): \(\dfrac{3}{7}\)
\(x\) = - \(\dfrac{1}{5}\)
b, 0,2.(\(x\) - 3) +2,4 = 10
0,2.(\(x\) - 3) = 10 - 2,4
0,2.(\(x\) - 3) = 7,6
\(x\) - 3 = 7,6:0,2
\(x\) - 3 = 38
\(x\) = 38 + 3
\(x\) = 41
\(\dfrac{3}{7}x-0,4=\dfrac{-17}{35}\)
\(\dfrac{3}{7}x=\dfrac{-17}{35}+0,4=\dfrac{-34}{70}+\dfrac{28}{70}\)
\(\dfrac{3}{7}x=\dfrac{-6}{70}=\dfrac{-3}{35}\)
\(x=\dfrac{-3}{35}:\dfrac{3}{7}=\dfrac{-3}{35}\cdot\dfrac{7}{3}\)
\(x=\dfrac{3\cdot\left(-1\right)\cdot7}{5\cdot7\cdot3}=-\dfrac{1}{5}\)
b) \(0,2\left(x-3\right)+2,4=10\)
\(0,2\left(x-3\right)=10-2,4=7,6\)
\(x-3=7,6:0,2=38\)
\(x=38+3=41\)
c) \(\left(x:2,2\right)\cdot\dfrac{1}{6}=\dfrac{-3}{8}\cdot\left(0,5-1\dfrac{3}{5}\right)\)
\(\left(x:2,2\right)\cdot\dfrac{1}{6}=\dfrac{-3}{8}\cdot\dfrac{-11}{10}\)
\(x:2,2=\dfrac{-3}{8}\cdot\dfrac{-11}{10}\cdot\dfrac{6}{1}\)
\(x:2,2=\dfrac{-3\cdot\left(-11\right)\cdot2\cdot3}{2\cdot4\cdot10\cdot1}=\dfrac{99}{40}\)
\(x=\dfrac{99}{40}\cdot2,2=\dfrac{99}{40}\cdot\dfrac{22}{10}\)
\(x=\dfrac{99\cdot2\cdot11}{40\cdot2\cdot5}=\dfrac{1089}{200}\)
Bài 1:
a) Tính:
\(\dfrac{21x7x11}{33x4}\)= ...
b) Tìm x biết: \(\dfrac{3}{x}\)=\(\dfrac{9}{21}\)
Bài 2: Tính
a) \(\dfrac{8x3x4}{16x3}\)= ...
b)\(\dfrac{30x25x7x8}{75x8x12x14}\)= ...
\(\dfrac{8.3.4}{8.2.3}=\dfrac{4}{2}=2\)
\(\dfrac{5.6.5.5.7.8}{5.5.3.8.2.6.2.7}=\dfrac{5}{12}\)
Bài 1:
\(\dfrac{7.3.7.11}{11.3.4}=\dfrac{49}{4}\)
\(b.\dfrac{3}{x}=\dfrac{3}{7}\Rightarrow x=7\)
Bài 2: ở phía dưới mình đã làm rồi
Bài 1
21x7x11/33x4 = 7x3x7x11/11x3x4
= 49/4
b, x= 3: 9/21
x= 3 x 21/9
x= 7
Tìm x, biết: a) \(\dfrac{x}{8}\) = \(\dfrac{7}{-2}\) b) \(\dfrac{1-2x}{6}=\dfrac{-1}{2}\)
c) \(\dfrac{x+2}{3}=\dfrac{x+3}{4}\) d) \(\dfrac{10}{2-x}=2\)
\(a,\dfrac{x}{8}=\dfrac{7}{-2}\\ \Rightarrow x=-28\\ b,\dfrac{1-2x}{6}=\dfrac{-1}{2}\\ \Leftrightarrow2-4x=-6\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\\ c,\dfrac{x+2}{3}=\dfrac{x+3}{4}\\ \Leftrightarrow4x+8=3x+9\\ \Leftrightarrow x=1\\ d,\dfrac{10}{2-x}=2\\ \Leftrightarrow4-2x=10\\ \Leftrightarrow2x=-6\\ \Leftrightarrow x=-3\)
1) giải pt :
a) \(\dfrac{7x+10}{x+1}\left(x^2-x-2\right)-\dfrac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
b) \(\dfrac{13}{2x^2+x-21}+\dfrac{1}{2x+7}+\dfrac{6}{9-x^2}=0\)
c) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
d) \(\dfrac{1+\dfrac{x}{x+3}}{1-\dfrac{x}{x+3}}=3\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
Gi ải các phương trình sau
a)x-3(2x-6)=21-(5x+3)
b)(x-2)(x+2)-(x-1)2=2(x+1)
c)\(\dfrac{9x+4}{6}\)=1-\(\dfrac{3x-5}{9}\)
d)\(\dfrac{6x+1}{x^2-7x+10}\)+\(\dfrac{5}{x-2}\)=\(\dfrac{3}{x-5}\)
a: \(x-3\left(2x-6\right)=21-\left(5x+3\right)\)
=>\(x-6x+18=21-5x-3\)
=>18=18(luôn đúng)
=>\(x\in R\)
b: \(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2=2\left(x+1\right)\)
=>\(x^2-4-x^2+2x-1=2x+2\)
=>2x-5=2x+2
=>-7=0(vô lý)
=>\(x\in\varnothing\)
c: \(\dfrac{9x+4}{6}=1-\dfrac{3x-5}{9}\)
=>\(\dfrac{3\left(9x+4\right)}{18}=\dfrac{18}{18}-\dfrac{2\left(3x-5\right)}{18}\)
=>3(9x+4)=18-2(3x-5)
=>27x+12=18-6x+10
=>27x+12=-6x+28
=>33x=16
=>\(x=\dfrac{16}{33}\left(nhận\right)\)
d: ĐKXĐ: \(x\notin\left\{2;5\right\}\)
\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
=>\(6x+1+5\left(x-5\right)=3\left(x-2\right)\)
=>6x+1+5x-25=3x-6
=>11x-24=3x-6
=>8x=18
=>\(x=\dfrac{9}{4}\left(nhận\right)\)
a: x−3(2x−6)=21−(5x+3)
=>x−6x+18=21−5x−3
=>18=18(luôn đúng)
=>x∈R
b: (x−2)(x+2)−(x−1)2=2(x+1)
=>x2−4−x2+2x−1=2x+2
=>2x-5=2x+2
=>-7=0(vô lý)
=>x∈∅
c: 3(9x+4)18=1818−2(3x−5)18
=>3(9x+4)=18-2(3x-5)
=>27x+12=18-6x+10
=>27x+12=-6x+28
=>33x=16
=>6x+1x2−7x+10+5x−2=3x−5
=>x=94(nhận)