Chứng tỏ đa thức vô nghiệm: \(M\left(y\right)=\left(y-3\right)^2+\left|2-y\right|+1\)
a) Tìm nghiệm của đa thức \(P\left(y\right)=3y+6\)
b) Chứng tỏ rằng đa thức sau không có nghiệm: \(Q\left(y\right)=y^4+2\)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
+) P (y) = 3y+ 6 có nghiệm nếu : 3y+ 6= 0
=> 3y= 0- 6
=> 3y= -6
=> y= -2
Vậy đa thức P(y) có nghiệm: y= -2
+ ) Q( y)= y4 + 2 nếu có nghiệm thì: y4 +2= 0
=> y4= -2
=> Q( y) = y4 +2 k có nghiệm.
Bài 1: Cho đa thức \(P=2x\left(x+y-1\right)+y^2+1.\)
1. Tính giá trị của P với \(x=-5;y=3.\)
2. Chứng minh rằng P luôn nhận giá trị không âm với mọi \(x,y.\)
Bài 2: Cho \(g\left(x\right)=4x^2+3x+1;h\left(x\right)=3x^2-2x-3.\)
1. Tính \(f\left(x\right)=g\left(x\right)-h\left(x\right)\)
2. Chứng tỏ rằng -4 là nghiệm của \(f\left(x\right)\)
3. Tìm tập hợp nghiệm của \(f\left(x\right)\)
Bài 1:
1. Thay x=-5;y=3 vào P ta được:
P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40
2. P=2x(x+y-1)+y2+1
\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)
Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha
Bài 2:
1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)
\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0
Vậy x=-4 là nghiệm của f(x)
3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)
Bạn tham khảo nha, không hiểu cứ hỏi mình ha
a) Tìm nghiệm của đa thức \(P\left(y\right)=3y+6\)
b) Chứng tỏ rằng đa thức sau không có nghiệm \(Q\left(y\right)=y^4+2\)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
a) Giả sử: P (y) = 0
=> 3y+6 = 0
=> 3y = -6
=> y =-2
Vậy y = -2 là một nghiệm của đa thức P (y)
b) Giả sử: Q (y) = 0
=> y4 + 2 = 0
=> y4 = -2
Vì y4 \(\ge\) 0 \(\forall\) y
nên y4 = -2 là vô lí
Vậy đa thức Q (y) = y4 + 2 không có nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm
Định m để hệ sau vô nghiệm
\(\left\{{}\begin{matrix}m^2x+\left(2-m\right)y=m^3+4\\mx+\left(2m-1\right)y=m^5-2\end{matrix}\right.\)
- Với \(m=0\) hệ có nghiệm (vô số nghiệm)
- Với \(m=\dfrac{1}{2}\) hệ có nghiệm
Hệ phương trình \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) vô nghiệm khi \(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)
- Với \(m\ne\left\{\dfrac{1}{2};0\right\}\) , xét điều kiện: \(\dfrac{a}{a'}=\dfrac{b}{b'}\)
Hay \(\dfrac{m^2}{m}=\dfrac{2-m}{2m-1}\Leftrightarrow m=\dfrac{2-m}{2m-1}\)
\(\Rightarrow m^2=1\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
+ Với \(m=1\Rightarrow\dfrac{m^2}{m}=\dfrac{2-m}{2m-1}=1\ne\dfrac{m^3+4}{m^5-2}=-5\) thỏa mãn hệ vô nghiệm
+ Với \(m=-1\) \(\Rightarrow\dfrac{m^2}{m}=\dfrac{2-m}{2m-1}=-1=\dfrac{m^3+4}{m^5-2}=-1\) ko thỏa mãn
Vậy \(m=1\) thì hệ vô nghiệm
Chứng tỏ biểu thức sau không phụ thuộc vào biến x,y:
\(\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)\(\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=-15\)
Vậy biểu thức trên không phụ thuộc vào biến
(x - 1).(\(x^2\) + y) - (\(x^2\) - y).(x - 2) - x (x + 2y) + 3 (y - 5)
= \(x^3\) + xy \(-x^2\) - y \(-x^3\) + \(2x^2\) + xy - 2y \(-x^2\) - 2xy + 3y - 15
= \(x^3\) \(-x^3\) \(-x^2\) \(-x^2\) + \(2x^2\) - y - 2y + 3y + xy + xy - 2xy - 15
= -15
Tìm nghiệm của các đa thức sau:
a)\(2x-6;b)\left(6-x\right)\left(4-2x\right);c)x^2+x;d)x^2-81;e)\left(2-x\right)\left(x^2+1\right)\)
b)Chứng tỏ các đa thức sau không có nghiệm:P(x)=\(-2-3x^2;\)Q(x)=\(y^2+\dfrac{1}{4}y^4+\dfrac{1}{4}\)
Bài 1:
a)2x-6
Ta có:2x-6=0
2x=6
=>x=3
Vậy x=3 là nghiệm của đa thức a)
b)(6-x)(4-2x)
Ta có:(6-x)(4-2x)=0
Th1:6-x=0 =>x=6
Th2:4-2x=0
2x=4 =>x=2
Vậy x=2 và 6 là nghiệm của đa thức b)
c)x2+x
Ta có:x2+x=0
x(x+1)=0
TH1:x=0
TH2:x+1=0 =>x=-1
Vậy x=0 và -1 là nghiệm của đa thức c)
d)x2-81
Ta có:x2-81=0
x2=81
=>x=+_ 9
Vậy x=+_ 9 là nghiệm của đa thức d)
e)(2-x)(x2+1)
Ta có:(2-x)(x2+1)=0
TH1:2-x=0 =>x=2
TH2:x2+1=0
x2=-1 (loại)
Vậy x=2 là nghiệm đa thức e)
Bài 2:
P(x)=-2-3x2
Ta có:
-3x2≤0 với mọi x
=>-2-3x2<-2 với mọi x
Vậy đa thức P(x) vô nghiệm
Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)
Ta có:
y2≥0 với mọi y
y4≥0 với mọi y
=>\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)≥\(\dfrac{1}{4}\)>0 với mọi y
Vậy đa thức Q(y) vô nghiệm
Tìm m để hpt sau vô nghiệm, vô số nghiệm : \(\hept{\begin{cases}2\left(m+1\right)x+\left(m+2\right)y=m-3\\\left(m+1\right)x+my=3m+7\end{cases}}\)
Bài 1: Chứng tỏ các biểu thức đại số sau đây bằng nhau
A=\(x^2-2xy^2+y^4\)
và B=\(\left(y^2-x\right)^2\)
Bài 2: Tìm nghiệm đa thức (x+1)(x-2)(2x-1)
Bài 3: Tìm gt không thích hợp của x,y trong các biểu thức sau
a)\(\frac{3x^2y+5}{\left(x-1\right)\left(y+2\right)}\)
b)\(\frac{5xy}{x-xy}\)
Bài 4:Tìm nghiệm của đa thức
a)\(\left(2x+3\right)\left(5-x\right)\)
b)\(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)\)
c)\(x^2+2x\)
d)\(x^2-x\)
Mình cần gấp lắm, mọi người giải hộ với nha!
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Cho đa thức f(x) tỏa mãn \(\left(x^2-5x\right).f\left(x-2\right)=\left(x^2+3x+2\right).f\left(x+1\right)\)với mọi x. Chứng tỏ rằng đa thức f(x) không có nghiệm.