So sánh hai phân số : \(\left(-\dfrac{1}{5}\right)^{30}\)và \(\left(-\dfrac{1}{3}\right)^{50}\)
Số nguyên \(x\) thỏa mãn \(\left(\dfrac{3}{4}-\dfrac{2}{3}\right)+\dfrac{5}{6}< x\le\dfrac{4}{5}-\left(\dfrac{3}{10}-\dfrac{5}{4}\right)\) là:
A. \(x=1\) B. \(x=0\) C. \(x=2\) D. \(x\in\left\{0;1\right\}\)
So sánh 3 phân số: \(\dfrac{9}{170};\dfrac{9}{230};\dfrac{53}{144}\)
Câu 1: D
Câu 3: 53/144>9/170>9/230
So sánh hai phân thức: \(P=\dfrac{n!}{\left(n-1\right)!\left(n+1\right)};Q=\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}\)
Ta có :
\(P=\dfrac{n!}{\left(n-1\right)!\left(n+1\right)}=\dfrac{1.2.3...\left(n-2\right)\left(n-1\right).n}{1.2.3...\left(n-2\right)\left(n-1\right).\left(n+1\right)}\)
\(\Rightarrow P=\dfrac{n}{n+1}\)
Ta cũng có :
\(Q=\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}=\dfrac{1.2.3..n\left(n+1\right)-1.2.3...n}{1.2.3..n\left(n+1\right)+1.2.3...n}\)
\(\Rightarrow Q=\dfrac{1.2.3...n\left(n+1-1\right)}{1.2.3...n\left(n+1+1\right)}=\dfrac{n}{n+2}\)
Do \(n+1< n+2\Rightarrow\dfrac{n}{n+1}>\dfrac{n}{n+2}\).
Vậy : \(P>Q\)
hãy so sánh mỗi số sau
a) \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}\) và 1
b) \(\left(\dfrac{1}{5}\right)^{\sqrt{2}}\) và 1
a.
\(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}=\left(\dfrac{1}{\sqrt{5}}\right)^{-1,2}=\left(5^{-\dfrac{1}{2}}\right)^{-1,2}=5^{\left(-\dfrac{1}{2}\right).\left(-1,2\right)}=5^{0,6}>1\) do \(\left\{{}\begin{matrix}5>1\\0,6>0\end{matrix}\right.\)
b.
\(\left(\dfrac{1}{5}\right)^{\sqrt{2}}=\left(5^{-1}\right)^{\sqrt{2}}=5^{-\sqrt{2}}< 1\) do \(\left\{{}\begin{matrix}5>1\\-\sqrt{2}< 0\end{matrix}\right.\)
a: \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}=\left(\dfrac{1}{\sqrt{5}}\right)^{-\dfrac{6}{5}}=\left(1:\dfrac{1}{\sqrt{5}}\right)^{-\dfrac{5}{6}}=\left(\sqrt{5}\right)^{-\dfrac{5}{6}}\)
\(1=\left(\sqrt{5}\right)^0\)
mà -5/6<0 và \(\sqrt{5}>1\)
nên \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}>1\)
b: \(0< \dfrac{1}{5}< 1\)
=>\(\left(\dfrac{1}{5}\right)^{\sqrt{2}}< \left(\dfrac{1}{5}\right)^0=1\)
hãy so sánh mỗi số sau
a) \(\left(0,2\right)^{-3}\) và \(\left(0,2\right)^{-2}\)
b) \(\left(\dfrac{1}{3}\right)^{2000}\) và \(\left(\dfrac{1}{3}\right)^{2004}\)
c) \(\left(3,2\right)^{1,5}\) và \(\left(3,2\right)^{1,6}\)
d) \(\left(0,5\right)^{-2021}\) và \(\left(0,5\right)^{-2023}\)
a: Vì 0,2<1
nên hàm số \(y=\left(0,2\right)^x\) nghịch biến trên R
mà -3<-2
nên \(\left(0,2\right)^{-3}>\left(0,2\right)^{-2}\)
b: Vì \(0< \dfrac{1}{3}< 1\)
nên hàm số \(y=\left(\dfrac{1}{3}\right)^x\) nghịch biến trên R
mà \(2000< 2004\)
nên \(\left(\dfrac{1}{3}\right)^{2000}>\left(\dfrac{1}{3}\right)^{2004}\)
c: Vì 3,2>1
nên hàm số \(y=\left(3,2\right)^x\) đồng biến trên R
mà \(1,5< 1,6\)
nên \(\left(3,2\right)^{1,5}< \left(3,2\right)^{1,6}\)
d: Vì \(0< 0,5< 1\)
nên hàm số \(y=\left(0,5\right)^x\) nghịch biến trên R
mà -2021>-2023
nên \(\left(0,5\right)^{-2021}< \left(0,5\right)^{-2023}\)
Cho A=\(\left(\dfrac{1}{2^2}-1\right)\)\(\left(\dfrac{1}{3^2}-1\right)\)\(\left(\dfrac{1}{4^2}-1\right)\)...\(\left(\dfrac{1}{2013^2}-1\right)\)\(\left(\dfrac{1}{2014^2}-1\right)\) và B= \(-\dfrac{1}{2}\)
Hãy so sánh A và B
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
Tính
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}\)
\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)
Cho \(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right).\) So sánh B và\(\dfrac{1}{2}\)
HELP ME!
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)
\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)
\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)
\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\)
\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)
\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)
\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)
\(B=-1\) (2019 số -1)
Mà: \(-1< \dfrac{1}{2}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(\dfrac{1}{2^2}\); \(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1
Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:
(2020 - 2):1 + 1 = 2019 (số hạng)
Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)
So sánh : \(\left(\dfrac{1}{2}\right)^{12}\)và \(\left(\dfrac{1}{3}\right)^9\)
\(\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{8}\right)^3\\ \left(\dfrac{1}{3}\right)^9=\left(\dfrac{1}{27}\right)^3\\ Ta\text{ }có:\dfrac{1}{8}>\dfrac{1}{27}\\ Vậy:\left(\dfrac{1}{2}\right)^{12}>\left(\dfrac{1}{3}\right)^9\)
\(\left(\dfrac{1}{2}\right)^{12}=\dfrac{1}{4096};\left(\dfrac{1}{3}\right)^9=\dfrac{1}{19683}\\ \Rightarrow\dfrac{1}{4096}>\dfrac{1}{19683}\\ \Rightarrow\left(\dfrac{1}{2}\right)^{12}>\left(\dfrac{1}{3}\right)^9\)
A= \(\left(\dfrac{1}{2}-1\right)\)\(\left(\dfrac{1}{3}-1\right)\).........\(\left(\dfrac{1}{10}-1\right)\). So sánh A với \(\dfrac{-1}{9}\)
B= \(\left(\dfrac{1}{4}-1\right)\)\(\left(\dfrac{1}{9}-1\right)\)...........\(\left(\dfrac{1}{100}-1\right)\). So sánh B với \(\dfrac{-11}{21}\)
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)