Ta có :
\(P=\dfrac{n!}{\left(n-1\right)!\left(n+1\right)}=\dfrac{1.2.3...\left(n-2\right)\left(n-1\right).n}{1.2.3...\left(n-2\right)\left(n-1\right).\left(n+1\right)}\)
\(\Rightarrow P=\dfrac{n}{n+1}\)
Ta cũng có :
\(Q=\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}=\dfrac{1.2.3..n\left(n+1\right)-1.2.3...n}{1.2.3..n\left(n+1\right)+1.2.3...n}\)
\(\Rightarrow Q=\dfrac{1.2.3...n\left(n+1-1\right)}{1.2.3...n\left(n+1+1\right)}=\dfrac{n}{n+2}\)
Do \(n+1< n+2\Rightarrow\dfrac{n}{n+1}>\dfrac{n}{n+2}\).
Vậy : \(P>Q\)