xét dấu : \(x-\sqrt{1-x^2}\)
Giải ft ( lập bảng xét dấu nếu cần )
1. \(\sqrt{5x-1}-\sqrt{3x-2}-\sqrt{x-1}=0\)
2. \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
1) ĐK: \(x\ge1\)
Pt \(\Leftrightarrow\sqrt{5x-1}-3-\left(\sqrt{3x-2}-2\right)-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\frac{5x-1-9}{\sqrt{5x-1}+3}-\frac{3x-2-4}{\sqrt{3x-2}+2}-\frac{x-1-1}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-2}+3}-\frac{3\left(x-2\right)}{\sqrt{3x-2}+2}-\frac{x-2}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-2}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}\right)=0\)
\(\Leftrightarrow x=2\) (nhận)
2) ĐK: \(0\le x\le1\)
Đặt \(a=\sqrt{x};b=\sqrt{1-x}\left(a,b\ge0\right)\)
ta có \(a^2+b^2=1\Leftrightarrow\left(a+b\right)^2-2ab=1\Leftrightarrow\left(a+b\right)^2=1+2ab\left(1\right)\)
Pt đã cho trở thành: \(1+\frac{2}{3}ab=a+b\left(2\right)\)
Thế (2) vào (1) ta được: \(1+2ab=\left(1+\frac{2}{3}ab\right)^2\Leftrightarrow\left[\begin{array}{nghiempt}ab=\frac{3}{2}\\ab=0\end{array}\right.\)
Thế ab = 3/2 vào (1) được a + b = 2, khi đó a, b là hai nghiệm của pt:
\(t^2-2t+\frac{3}{2}=0\) (vô nghiệm)
Thế ab = 0 vào (1) được a + b = 1, khi đó a, b là hai nghiệm của pt:
\(t^2-t=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\)
* Khi a = 1, b = 0: pt đã cho có nghiệm x = 1 (nhận)
* Khi a = 0; b = 1: pt đã cho có nghiệm x = 0 (nhận)
Xét dấu tam thức bậc hai:
\(D\left(x\right)=\dfrac{11x+3}{-x^2+5x-4}\)
\(E\left(x\right)=\left(\left(x^2+\sqrt{3}-1\right)x-\sqrt{3}\right).\left(\left(x^2-\sqrt{7}-1\right)x+\sqrt{3}\right)\)
Giải bft ( lập bảng xét dấu nếu cần )
1. \(\sqrt{x^2-1}\ge\sqrt{2x^2+2x}\)
2. (x+4)(x+1) - \(3\sqrt{x^2+5x+2}< 6\)
2) ĐK: \(x^2+5x+2\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\le\frac{-5-\sqrt{17}}{2}\\x\ge\frac{-5+\sqrt{17}}{2}\end{array}\right.\)
bpt \(\Leftrightarrow x^2+5x+4-3\sqrt{x^2+5x+2}< 6\)
Đặt \(t=\sqrt{x^2+5x+2}\left(t\ge0\right)\) , bất pt trở thành:
\(t^2+2-3t< 6\Leftrightarrow t^2-3t-4< 0\Leftrightarrow-1< t< 4\)
Kết hợp điều kiện được: \(0\le t< 4\Rightarrow0\le\sqrt{x^2+5x+2}< 4\Leftrightarrow x^2+5x+2< 16\)
\(\Leftrightarrow x^2+5x-14< 0\Leftrightarrow-7< x< 2\)
Kết hợp điều kiện, bất pt đã cho có tập nghiệm:
(-7; \(\frac{-5-\sqrt{17}}{2}\)] \(\cup\) [ \(\frac{-5+\sqrt{17}}{2}\); 2)
Bài 1: giải phương trình
a,\(3\sqrt{x-2}+\sqrt{25x-50}=2^5\)
Bài 2: tìm giá trị của x và biểu diễn trên trục số thực
a,\(x^2-5x+4< 0\) (đưa về BPT tích A.B <0=>xét A,B trái dấu)
b,\(\dfrac{x-3}{x+1}< 1\) (đưa về dạng \(\dfrac{A}{B}\) <0.Xét \(\left\{{}\begin{matrix}A,B\\B\ne0\end{matrix}\right.\)(a,b trái dấu)
Bài 3: Để đi đoạn đường từ A đến B, một xe máy đã đi hết 3h20 phút, còn một ôtô chỉ đi 2h30 phút. Tính chiều dài quãng đường AB biết rằng vận tốc của ôtô lớn hơn vận tốc xe máy 20km/h.(bài này chỉ cần viết phương trình và giải phương trình)
AI LÀM ĐƯỢC CÁI NÀO THÌ LÀM,MK CẦN GẤP BÂY H,LÀM TỪ 3 CÂU TRỞ LÊN
Bài 2 :
a, Ta có : \(x^2-5x+4< 0\)
\(\Leftrightarrow x^2-x-4x+4< 0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
Vậy ...
b, Ta có : \(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow\dfrac{x-3}{x+1}-\dfrac{x+1}{x+1}< 0\)
\(\Leftrightarrow\dfrac{x-3-x-1}{x+1}=\dfrac{-4}{x+1}< 0\)
Thấy - 4 < 0
Nên để \(-\dfrac{4}{x+1}< 0\) <=> x + 1 > 0 ( TH A, B trái dấu )
Vậy ...
Bài 1:
a) ĐKXĐ: \(x\ge2\)
Ta có: \(3\sqrt{x-2}+\sqrt{25x-50}=2^5\)
\(\Leftrightarrow3\sqrt{x-2}+5\sqrt{x-2}=32\)
\(\Leftrightarrow8\sqrt{x-2}=32\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
hay x=18(thỏa ĐK)
Vậy: S={18}
\(ChoP=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) với x khác 0 và -1
Hãy so sánh P và 1
Gợi ý: xét (P-1) và tìm dấu của (P-1). từ đó kết luận
p = 1+ \(\dfrac{x+1}{\sqrt{x}}\) sẽ lớn hơn -1 vì \(\sqrt{x}\) => x dương => \(\dfrac{x+1}{\sqrt{x}}\)> 0
Ta có: \(P-1=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x+1}{\sqrt{x}}>0\forall x\) thỏa mãn ĐKXĐ
Suy ra: P>1
Xét dấu các tam thức bậc hai sau:
a) \( - 3{x^2} + x - \sqrt 2 \)
b) \({x^2} + 8x + 16\)
c) \( - 2{x^2} + 7x - 3\)
a) \(f(x) = - 3{x^2} + x - \sqrt 2 \)có \(\Delta = 1 - 12\sqrt 2 < 0\)và a=-3<0 nên \(f(x) < 0\)với mọi \(x \in \mathbb{R}\)
b) \(g(x) = {x^2} + 8x + 16\) có \(\Delta = 0\)và a=1>0 nên g(x) có nghiệm kép \(x = - 4\) và g(x) >0 với mọi \(x \ne - 4\)
c) \(h(x) = - 2{x^2} + 7x - 3\) có \(\Delta = 25\)>0 và a=-2<0 và có 2 nghiệm phân biệt \({x_1} = \frac{1}{2};{x_2} = 3\)
Do đó ta có bảng xét dấu h(x)
Suy ra h(x) <0 với mọi \(x \in \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {3; + \infty } \right)\) và h(x)>0 với mọi \(x \in \left( {\frac{1}{2};3} \right)\)
Tìm x để \(\sqrt{\dfrac{2x-3}{1-x}}\)xác định (có thể làm theo cách sử dụng bảng xét dấu)
ĐKXĐ: \(1< x\le\dfrac{3}{2}\)
Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại \(x = 1\).
a) \(f\left( x \right) = 2{x^2} + x - 1\);
b) \(g\left( x \right) = - {x^4} + 2{x^2} + 1\)
c) \(h\left( x \right) = - {x^2} + \sqrt 2 .x - 3\)
a) Biểu thức \(f\left( x \right) = 2{x^2} + x - 1\) là một tam thức bậc hai
\(f\left( 1 \right) = {2.1^2} + 1 - 1 = 2 > 0\) nên \(f\left( x \right)\) dương tại \(x = 1\)
b) Biểu thức \(g\left( x \right) = - {x^4} + 2{x^2} + 1\) không phải là một tam thức bậc hai
c) Biểu thức \(h\left( x \right) = - {x^2} + \sqrt 2 .x - 3\) là một tam thức bậc hai
\(h\left( 1 \right) = - {1^2} + \sqrt 2 .1 - 3 = \sqrt 2 - 4 < 0\) nên \(h\left( x \right)\) âm tại \(x = 1\)
Tìm tập xác định của hàm số bằng cách lập bảng xét dấu :
\(y=\sqrt{\frac{x^2+x-12}{x+2}}\)
phân tích các đa thức sau thành nhân tử rồi xét dấu : a) -x2 + x + 6 ; b) 2x2 + (2 - \(\sqrt{3}\) )x + \(\sqrt{3}\)
a: \(-x^2+x+6=-\left(x^2-x-6\right)=-\left(x-3\right)\left(x+2\right)\)
Câu b không phân tích được nhé bạn