Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DỊ Bình
Xem chi tiết
Neet
12 tháng 1 2019 lúc 22:56

Qui đồng lên ta có: (cần chứng minh)

\(2\sum\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)

\(\Leftrightarrow2\sum\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\le7\left(x^2y^2z^2+\sum x^2+\sum x^2y^2+1\right)\)

\(\Leftrightarrow2\sum x^4+2\sum x^4z^2\le7x^2y^2z^2+3\sum x^2z^2+\sum x^2+1\)

Hay \(\left(\sum x^2+x+y+z-2\sum x^4\right)+7x^2y^2z^2+3\sum x^2z^2-2\sum x^4z^2\ge0\)

hay \(\sum x^2\left(1-x^2\right)+\sum x\left(1-x^3\right)+7x^2y^2z^2+\sum x^2z^2+2\sum x^2z^2\left(1-x^2\right)\ge0\)

(luôn đúng do x, y, z\(\in\left[0;1\right]\))

Vậy ta có đpcm. Dấu = xảy ra khi 2 số bằng 0, 1 số bằng 1.

Lê Chí Cường
Xem chi tiết
Thắng Nguyễn
26 tháng 9 2016 lúc 23:15

\(VT=x^2+y^2+z^2+3-\frac{y^2\left(x^2+1\right)}{y^2+1}-\frac{z^2\left(y^2+1\right)}{z^2+1}-\frac{x^2\left(z^2+1\right)}{x^2+1}\)

\(\le x^2+y^2+z^2+3-\frac{y^2\left(x^2+1\right)+z^2\left(y^2+1\right)+x^2\left(z^2+1\right)}{2}\)

\(\le\frac{x^2+y^2+z^2}{2}+3-\frac{x^2y^2+y^2z^2+z^2x^2}{2}\)

\(\le\frac{x^2+y^2+z^2}{2}+3\)

Mặt khác ta có: \(x^2+y^2+z^2=1-2\left(xy+yz+zx\right)\le1\)

\(\Rightarrow VT\le\frac{7}{2}\).Dấu "=" xảy ra tại \(\left(0;0;1\right)\) và các hoán vị của nó

Kiệt Nguyễn
4 tháng 6 2020 lúc 12:19

Với \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\), ta cần chứng minh: \(\frac{x^2+1}{y^2+1}+\frac{y^2+1}{z^2+1}+\frac{z^2+1}{x^2+1}\le\frac{7}{2}\)

\(\Leftrightarrow2\Sigma_{cyc}\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)   \(\Leftrightarrow2\Sigma_{cyc}\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\)\(\le7\left(x^2y^2z^2+x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+1\right)\)

\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+2\left(x^4z^2+y^4x^2+z^4y^2\right)\)\(\le7x^2y^2z^2+3\left(x^2y^2+y^2z^2+z^2x^2\right)+x^2+y^2+z^2+1\)

\(\Leftrightarrow\left[x^2+y^2+z^2+x+y+z-2\left(x^4+y^4+z^4\right)\right]\)\(+7x^2y^2z^2+3\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^4z^2+y^4x^2+z^4y^2\right)\ge0\)

\(\Leftrightarrow\text{​​}\Sigma_{cyc}x^2\left(1-x^2\right)+\Sigma_{cyc}x\left(1-x^3\right)+7x^2y^2z^2\)\(+\left(x^2z^2+y^2x^2+z^2y^2\right)+2\Sigma x^2z^2\left(1-x^2\right)\ge0\)

(Đúng do \(x,y,z\in\left[0;1\right]\))

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1;0;0\right)\)và các hoán vị

Khách vãng lai đã xóa
Trần Cao Vỹ Lượng
28 tháng 9 2016 lúc 8:39

công nhận bạn giải hay thật

Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 6 2021 lúc 8:56

BĐT bên trái rất đơn giản, chỉ cần áp dụng:

\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được

Ta chứng minh BĐT bên phải:

\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

Thật vậy, ta có:

\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)

\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)

\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị

đấng ys
Xem chi tiết
Trên con đường thành côn...
24 tháng 8 2021 lúc 11:03

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

Karry Angel
Xem chi tiết
Bùi Nhất Duy
8 tháng 8 2017 lúc 17:22

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

TFBoys
8 tháng 8 2017 lúc 19:40

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Lê Hà My
Xem chi tiết
Phạm Thúy Vy
Xem chi tiết
Kuro Kazuya
7 tháng 6 2017 lúc 18:55

\(\Sigma\left(\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\le3\)

\(\Leftrightarrow\Sigma\left(\dfrac{x^2+y^2+z^2}{x^5+y^2+z^2}\right)\le3\)

\(\Leftrightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{3}{x^2+y^2+z^2}\)

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\left(x^5+y^2+z^2\right)\left(\dfrac{1}{x}+y^2+z^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}\le\dfrac{\dfrac{1}{x}+y^2+z^2}{\left(x^2+y^2+z^2\right)^2}\)

Thiết lập tương tự và thu lại ta có

\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)

Chứng minh rằng \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{3}{x^2+y^2+z^2}\)

\(\Leftrightarrow\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le x^2+y^2+z^2\) ( vì \(xyz=1\) )

\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\) ( luôn đúng theo hệ quả của bất đẳng thức Cauchy )

\(\Rightarrow\) đpcm

Dấu " = " xảy ra khi \(x=y=z=1\)

Xem chi tiết
Lê Hà My
Xem chi tiết