Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miner Đức
Xem chi tiết
Linh Nhi
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 7 2018 lúc 9:24

\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )

\(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )

+) Với : \(\sqrt{x-1}>2\)\(x>5\) , ta có :

( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)

\(2\sqrt{x-1}=5\)\(x=\dfrac{29}{4}\left(TM\right)\)

+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :

( 1) ⇔ \(5=5\) ( luôn đúng )

KL.............

\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)

\(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)

Tới đây giải tương tự như trên nhé .

Còn lại Tương tự .

Cold Wind
5 tháng 7 2018 lúc 9:27

mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)

ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)

** lấy căn lớn đầu tiên của câu a làm vd**

\(a^2+b=x+3\) (1)

\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)

(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)

thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)

Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))

ráp a, căn b vào công thức (#), ta đc:

\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)

***************

sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.

Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:

\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)

chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)

(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)

dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)

Xem chi tiết
Luyri Vũ
Xem chi tiết
2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 15:32

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

Mai Thị Thúy
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
Akai Haruma
9 tháng 8 2021 lúc 23:31

Bài 2:
ĐKXĐ: $6\geq x\geq \frac{-1}{3}$
PT $\Leftrightarrow (\sqrt{3x+1}-4)+(1-\sqrt{6-x})+(3x^2-14x-5)=0$

$\Leftrightarrow \frac{3(x-5)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+(3x+1)(x-5)=0$
$\Leftrightarrow (x-5)\left[\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+(3x+1)\right]=0$

Với $x$ thuộc đkxđ, dễ thấy biểu thức trong ngoặc vuông $>0$

$\Rightarrow x-5=0$

$\Leftrightarrow x=5$

Akai Haruma
9 tháng 8 2021 lúc 23:36

Bài 3:

PT $3x=\sqrt{x^2+12}-\sqrt{x^2+5}+5>0$

$\Rightarrow x>0$

Lại có:

PT $\Leftrightarrow \sqrt{x^2+12}-4=3(x-2)+(\sqrt{x^2+5}-3)$

$\Leftrightarrow \frac{x^2-4}{\sqrt{x^2+12}+4}=3(x-2)+\frac{x^2-4}{\sqrt{x^2+5}+3}$

$\Leftrightarrow (x-2)\left[\frac{x+2}{\sqrt{x^2+12}+4}-3-\frac{x+2}{\sqrt{x^2+5}+3}\right]=0$

Với $x>0$, dễ thấy:
$\frac{x+2}{\sqrt{x^2+5}+3}+3>\frac{x+2}{\sqrt{x^2+12}+4}$ nên biểu thức trong ngoặc vuông âm.

Do đó $x-2=0\Leftrightarrow x=2$ (tm)

 

 

Akai Haruma
10 tháng 8 2021 lúc 17:11

Bài 1:

Đặt $\sqrt[3]{3x-2}=a; \sqrt{6-5x}=b$ với $b\geq 0$. Khi đó pt trở thành:
\(\left\{\begin{matrix} 2a+3b=8\\ 5a^3+3b^2=8\end{matrix}\right.\Rightarrow 5a^3+3(\frac{8-2a}{3})^2=8\)

\(\Leftrightarrow 15a^3+(8-2a)^2=24\)

\(\Leftrightarrow 15a^3+4a^2-32a+40=0\)

\(\Leftrightarrow 15a^2(a+2)-26a(a+2)+20(a+2)=0\)

$\Leftrightarrow (a+2)(15a^2-26a+20)=0$

Dễ thấy $15a^2-26a+20>0$ nên $a+2=0$

$\Leftrightarrow a=-2$
$\Rightarrow b=4$

$\Rightarrow x=-2$

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:41

Bài 1:

Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)

\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)

\(=6\sqrt{2}\cdot\sqrt{2}\)

=12

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:45

Bài 2: 

1) ĐKXĐ: \(x\le0\)

2) ĐKXĐ: \(x\le2\)

3) ĐKXĐ: \(x>\dfrac{-3}{2}\)

4) ĐKXĐ: x>0

5) ĐKXĐ: x<3

anh tuan
Xem chi tiết
Tho Nguyễn Văn
29 tháng 7 2022 lúc 15:21

chịu thôi

Nguyễn Hiền Mai
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 20:56

Câu a kia đề là \(3\sqrt{3x^3-8}\) hay \(3\sqrt{3x^3}-8\)

b/ \(x=\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)

\(\Rightarrow x^3=10-3x\left(\sqrt[3]{\left(5\sqrt{6}+5\right)\left(5\sqrt{6}-5\right)}\right)=10-15x\)

\(\Leftrightarrow x^3+15x=10\)