Chứng minh rằng:
\(\alpha,999...=\alpha+1\) với mọi \(\alpha\)
Chứng minh rằng với mọi góc \(\alpha \;\;({0^o} \le \alpha \le {180^o})\), ta đều có:
a) \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\)
b) \(\tan \alpha .\cot \alpha = 1\;({0^o} < \alpha < {180^o},\alpha \ne {90^o})\)
c) \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\;(\alpha \ne {90^o})\)
d) \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\;({0^o} < \alpha < {180^o})\)
a)
Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)
Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.
Ta có: tam giác vuông OHM vuông tại H và \(\alpha = \widehat {xOM}\)
Do đó: \(\sin \alpha = \frac{{MH}}{{OM}} = MH;\;\cos \alpha = \frac{{OH}}{{OM}} = OH.\)
\( \Rightarrow {\cos ^2}\alpha + {\sin ^2}\alpha = O{H^2} + M{H^2} = O{M^2} = 1\)
b) Ta có:
\(\begin{array}{l}\;\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)
c) Với \(\alpha \ne {90^o}\) ta có:
\(\begin{array}{l}\;\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)
d) Ta có:
\(\begin{array}{l}\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)
Chứng minh rằng:
\(\left(1+\sin^2\alpha\right)x^2-2\left(\sin\alpha+\cos\alpha\right)x+1+\cos^2\alpha>0\) với mọi x và α
Coi BPT là bậc 2 với tham số \(sina;cosa\)
Đặt \(f\left(x\right)=\left(1+sin^2a\right)x^2-2\left(sina+cosa\right)x+1+cos^2a\)
Ta có: \(1+sin^2a>0;\forall a\)
\(\Delta'=\left(sina+cosa\right)^2-\left(1+sin^2a\right)\left(1+cos^2a\right)\)
\(=sin^2a+cos^2a+2sina.cosa-1-sin^2a-cos^2a-sin^2a.cos^2a\)
\(=-sin^2a.cos^2a+2sina.cosa-1\)
\(=-\left(sina.cosa-1\right)^2=-\left(\frac{1}{2}sin2a-1\right)^2\)
\(=-\left(\frac{sin2a-2}{2}\right)^2\)
Do \(sin2a-2< 0;\forall a\Rightarrow\left(\frac{sin2a-2}{2}\right)^2>0;\forall a\)
\(\Rightarrow\Delta'< 0;\forall a\Rightarrow f\left(x\right)>0\) với mọi x và a
Chứng minh rằng:
\(\frac{sin\alpha+cos\alpha-1}{sin\alpha-cos\alpha+1}=\frac{cos\alpha}{1+sin\alpha}\)
mọi người giúp mình vs =((
Chứng minh rằng với mọi góc \(\alpha\left(0^0\le\alpha\le180^0\right)\) ta đều có \(\cos^2\alpha+\sin^2\alpha=1\) ?
Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy
=> = cosα;
=
= sinα;
Trong tam giác vuông MPO:
MP2+ PO2 = OM2 => cos2 α + sin2 α = 1
Câu2: Trong ∆ vuông với góc alpha tùy ý. Chứng minh : tan alpha × cos alpha = 1.!! ( mọi người giúp em với )
Chứng minh rằng với mọi \(\alpha\) làm cho biểu thức \(\dfrac{\sin\alpha+\tan\alpha}{\cos\alpha+\cot\alpha}\) có nghĩa, biểu thức đó không thể là một số âm ?
Ta có:
\(\dfrac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}=\dfrac{sin\alpha+\dfrac{sin\alpha}{cos\alpha}}{cos\alpha+\dfrac{cos\alpha}{sin\alpha}}\)\(=\dfrac{sin\alpha cos\alpha+sin\alpha}{cos\alpha}:\dfrac{cos\alpha sin\alpha+cos\alpha}{sin\alpha}\)
\(=\dfrac{sin\alpha cos\alpha+sin\alpha}{cos\alpha}.\dfrac{sin\alpha}{cos\alpha sin\alpha+cos\alpha}\)
\(=\dfrac{sin^2\alpha\left(cos\alpha+1\right)}{cos^2\alpha\left(sin\alpha+1\right)}>0\) nếu biểu thức có nghĩa.
Chứng minh rằng với mọi gíc nhọn α tùy ý, mỗi biểu thức sau không phụ thuộc α
a, A=(Sin α + Cos α )2 + (Sin α - Cos α )2
b, B=Sin6 α + Cos6 α + 3Sin2 α . Cos2 α
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
Chứng minh rằng: với mọi góc \(\alpha\)tùy ý, ta có : \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
Chứng minh đẳng thức :
sin2α.tanα + cos2α.cotα+2sinα.cosα = tanα+cotα
Mọi người giúp em với ạ !!
Mình viết luôn là sin với cos, bạn tự cho thêm \(\alpha\) nhé.
VT= \(\sin^2.\dfrac{\sin}{\cos}+\cos^2.\dfrac{\cos}{\sin}+2\sin\cos\)
= \(\dfrac{\sin^3}{\cos}+\dfrac{\cos^3}{\sin}+2\sin\cos\)
= \(\dfrac{\sin^4+\cos^4+2\sin^2.\cos^2}{\cos.\sin}\)
= \(\dfrac{\left(\sin^2+\cos^2\right)^2}{\cos.\sin}\)
= \(\dfrac{1}{\sin.\cos}\)(1)
VP = \(\dfrac{\sin}{\cos}+\dfrac{\cos}{\sin}\)
= \(\dfrac{\sin^2+\cos^2}{\cos.\sin}\)
= \(\dfrac{1}{\cos.\sin}\)(2)
từ (1) và (2) => VT=VP (đpcm)
Chúc bạn học tốt!