Những câu hỏi liên quan
Phúc Trần
Xem chi tiết
phan tuấn anh
20 tháng 1 2016 lúc 22:50

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

Bình luận (0)
Phúc Trần
20 tháng 1 2016 lúc 22:53

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

Bình luận (0)
Mailika Jibu Otochi
20 tháng 1 2016 lúc 23:19

cậu siêu quá , viết thế này chắc tớ chết mất , bạn tải mỗi lần 1, 2 câu thôi .

Bình luận (0)
bach nhac lam
Xem chi tiết
tthnew
25 tháng 4 2020 lúc 18:22

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

Bình luận (0)
zZz Cool Kid zZz
26 tháng 4 2020 lúc 11:26

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

Bình luận (0)
bach nhac lam
2 tháng 3 2020 lúc 23:47
Bình luận (0)
 Khách vãng lai đã xóa
Đen đủi mất cái nik
Xem chi tiết
Nguyễn Tiến Đức
10 tháng 9 2018 lúc 19:41

tự ra câu hởi tự trả lời à bạn

Bình luận (0)
Đen đủi mất cái nik
10 tháng 9 2018 lúc 19:44

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

Bình luận (0)
Vãi Linh Hồn
Xem chi tiết
Thanh Tùng DZ
30 tháng 4 2020 lúc 21:19

Ta có :

\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)

không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)

Khi đó : A = x - y + y - z + x - z = 2x - 2z

vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)

\(\Rightarrow A\le6\)

Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các  hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
Thiên Y
Xem chi tiết
Lâm ngọc mai
Xem chi tiết
Hoàng Thị Ánh Phương
14 tháng 3 2020 lúc 15:50

Bài 1 :

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=\left|x-1\right|=1-x\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=\left|y-1\right|=1-y\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=\left|z-1\right|=1-z\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
....
Xem chi tiết
Akai Haruma
17 tháng 6 2021 lúc 17:09

a.

ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x}-2=\sqrt{y-1}-3=0$

$\Leftrightarrow x=4; y=10$

 

Bình luận (3)
Akai Haruma
17 tháng 6 2021 lúc 17:11

b.

ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$

$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$

$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$

Bình luận (0)
Akai Haruma
17 tháng 6 2021 lúc 17:13

c.

ĐKXĐ: $x\geq \frac{-1}{8}$

PT $\Leftrightarrow 9x+17-6\sqrt{8x+1}-4\sqrt{x+3}=0$

$\Leftrightarrow [(8x+1)-6\sqrt{8x+1}+9]+[(x+3)-4\sqrt{x+3}+4]=0$

$\Leftrightarrow (\sqrt{8x+1}-3)^2+(\sqrt{x+3}-2)^2=0$

$\Rightarrow \sqrt{8x+1}-3=\sqrt{x+3}-2=0$

$\Rightarrow x=1$ (thỏa mãn đkxđ)

Bình luận (0)
bach nhac lam
Xem chi tiết
bach nhac lam
23 tháng 2 2020 lúc 11:25
Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 2 2020 lúc 12:18

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 2 2020 lúc 12:18

2/

\(A\ge\frac{8a^2+1-a}{4a}+b^2=2a+\frac{1}{4a}+b^2-\frac{1}{4}=a+\frac{1}{4a}+b^2+a-\frac{1}{4}\)

\(A\ge a+\frac{1}{4a}+b^2+1-b-\frac{1}{4}=a+\frac{1}{4a}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\ge1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b/ Giả thiết tương đương:

\(a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow\frac{a}{b+1}+\frac{b}{a+1}=2\)

Hình như bạn ghi nhầm biểu thức

Đặt \(\left(\frac{a}{b+1};\frac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x+y=2\\0\le x;y\le2\end{matrix}\right.\)

\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+\left(xy\right)^3\)

\(=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)

\(=\left(xy\right)^3-6xy+9=9-xy\left(6-\left(xy\right)^2\right)\)

Do \(xy\le1\Rightarrow6-\left(xy\right)^2>0\Rightarrow xy\left(6-\left(xy\right)^2\right)\ge0\)

\(\Rightarrow P\le9\Rightarrow P_{max}=9\) khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) hay \(\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

Câu c giống câu này:

https://hoc24.vn/hoi-dap/question/790896.html

Bạn tham khảo tạm, cách đó quá dài nên chắc chắn ko tối ưu, nó trâu bò quá

Bình luận (0)
 Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Akai Haruma
5 tháng 8 2020 lúc 14:52

Bài 1:
Áp dụng BĐT AM-GM:

$3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1$

$(ab+bc+ac)^2\geq 3abc(a+b+c)=9abc\Rightarrow \frac{2}{3+ab+bc+ac}\leq \frac{2}{3+3\sqrt{abc}}$

Áp dụng BĐT Holder $(1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^3\Rightarrow \sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\leq \sqrt[3]{\frac{abc}{(1+\sqrt[3]{abc})^3}}$

Đặt $\sqrt[6]{abc}=t$. Trong đó $0< t\leq 1$ thì:

$P\leq \frac{2}{3+3t^3}+\frac{t^3}{6}+\frac{t^2}{t^2+1}$

Ta sẽ chỉ ra $\frac{2}{3+3t^3}+\frac{t^3}{6}+\frac{t^2}{t^2+1}\leq 1$

$\Leftrightarrow \frac{2}{3+3t^3}+\frac{t^3}{6}\leq \frac{1}{t^2+1}$

$\Leftrightarrow t^8+t^6+t^5-5t^3+4t^2-2\leq 0$

$\Leftrightarrow (t-1)[t^7+t^6+2t^5+3t^4+3t^3+2t(1-t)+2]\leq 0$ (luôn đúng với mọi $0< t\leq 1$

Do đó $P\leq 1$

Vậy $P_{\max}=1$ khi $a=b=c=1$

Bình luận (0)
Akai Haruma
5 tháng 8 2020 lúc 15:23

Bài 2 bạn xem viết có sai đề không?

Bình luận (0)
le tri tien
20 tháng 8 2020 lúc 20:43

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

Bình luận (0)