cho a ≠ \(\dfrac{-7}{3}\); b ≠\(\dfrac{7}{2}\) và 2a-b=7. Tính giá trị của biểu thức: \(\dfrac{5a-b}{3a+7}-\dfrac{3b-2a}{2b-7}\)
Cho \(a=\dfrac{-2+\sqrt{3}}{3};b=\dfrac{-2-\sqrt{3}}{3}\). Tính \(a^7+b^7\)
Ta có \(\left\{{}\begin{matrix}a+b=\dfrac{-2+\sqrt{3}}{3}+\dfrac{-2-\sqrt{3}}{3}=-\dfrac{4}{3}\\ab=\dfrac{\left(-2+\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{9}=\dfrac{1}{9}\end{matrix}\right.\)
\(\left(a+b\right)^2=a^2+b^2+2ab=16\\ \Leftrightarrow a^2+b^2=\dfrac{16}{9}-2\cdot\dfrac{1}{9}=\dfrac{14}{9}\left(1\right)\\ \left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=-\dfrac{64}{27}\\ \Leftrightarrow a^3+b^3+\dfrac{1}{3}\cdot\left(-\dfrac{4}{3}\right)=-\dfrac{64}{27}\\ \Leftrightarrow a^3+b^3=-\dfrac{64}{27}+\dfrac{4}{9}=-\dfrac{52}{27}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(a^2+b^2\right)\left(a^3+b^3\right)=a^5+b^5+a^2b^2\left(a+b\right)=\dfrac{14}{9}\cdot\left(-\dfrac{52}{27}\right)=-\dfrac{728}{243}\\ \Leftrightarrow a^5+b^5+\dfrac{1}{81}\cdot\left(-\dfrac{4}{3}\right)=-\dfrac{728}{243}\\ \Leftrightarrow a^5+b^5=-\dfrac{728}{243}+\dfrac{4}{243}=-\dfrac{724}{243}\left(3\right)\)
\(\left(1\right)\left(3\right)\Rightarrow\left(a^2+b^2\right)\left(a^5+b^5\right)=a^7+b^7+a^2b^2\left(a^3+b^3\right)=\dfrac{14}{9}\cdot\left(-\dfrac{724}{243}\right)=-\dfrac{10136}{2187}\\ \Leftrightarrow a^7+b^7+\dfrac{1}{81}\cdot\left(-\dfrac{52}{27}\right)=-\dfrac{10136}{2187}\\ \Leftrightarrow a^7+b^7=-\dfrac{10136}{2187}-\dfrac{52}{2187}=-\dfrac{10188}{2187}=\dfrac{1132}{243}\)
Cho\(\pi< a< \dfrac{3\pi}{2}\).Trong các khẳng định sau khẳng định nào đúng?
A sin(\(\dfrac{7\pi}{2}+a\))>0
B sin(\(\dfrac{7\pi}{2}+a\))≥0
C sin(\(\dfrac{7\pi}{2}+a\))<0
D sin(\(\dfrac{7\pi}{2}+a\))≤0
\(\pi< a< \dfrac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)
\(sin\left(\dfrac{7\pi}{2}+a\right)=sin\left(4\pi-\dfrac{\pi}{2}+a\right)=sin\left(-\dfrac{\pi}{2}+a\right)=-sin\left(\dfrac{\pi}{2}-a\right)=-cosa>0\)
Đáp án A
Câu 1: Phân số nào sau đây bằng phân số \(\dfrac{-3}{7}\):
A.\(\dfrac{-6}{-14}\) B.\(\dfrac{15}{35}\) C.\(\dfrac{9}{-21}\) D.\(\dfrac{-7}{3}\)
Câu 2: Cho \(\dfrac{3}{x}\)=\(\dfrac{y}{12}\)=\(\dfrac{3}{4}\) thì giá trị của x và y là:
A.x =4;y =9 B.x =-4;y =-9 C.x =12;y =3 D.x =-12;=-3
Câu 3: Khi sắp xếp các số \(\dfrac{-2}{7}\);0;\(\dfrac{3}{-5}\);\(\dfrac{2}{3}\);\(\dfrac{8}{9}\) theo thứ tự tăng dần( dùng dấu <) ta được:
A.\(\dfrac{-2}{7}\)<\(\dfrac{3}{-5}\)<0<\(\dfrac{2}{3}\)<\(\dfrac{8}{9}\) B.\(\dfrac{3}{-5}\)<\(\dfrac{-2}{7}\)<0<\(\dfrac{2}{3}\)<\(\dfrac{8}{9}\)
C.\(\dfrac{-2}{7}\)<\(\dfrac{3}{-5}\)<0<\(\dfrac{8}{9}\)<\(\dfrac{2}{3}\) D.\(\dfrac{3}{-5}\)<\(\dfrac{-2}{7}\)<0<\(\dfrac{8}{9}\)<\(\dfrac{2}{3}\)
Câu 4: Chia đều 1 thanh gỗ dài 8,32m thành 4 doạn thẳng bằng nhau. Tính độ dài mỗi đoạn gỗ (làm tròn kết quả đến hàng phần mười).
A.2m B.2,18m C.2,1m D.2,08m
Câu 5: Cho đoạn thẳng AB =6cm. Điểm K nằm giữa AB, biết KA =4cm thì đoạn thẳng KB bằng:
A.10cm B.6cm C.4cm D.2cm
Câu 6: Những phân số nào sau đây bằng nhau:
A.\(\dfrac{3}{5}\)và\(\dfrac{9}{15}\) B.\(\dfrac{3}{5}\)và\(\dfrac{8}{15}\) C.\(\dfrac{3}{5}\)và\(\dfrac{9}{25}\) D.\(\dfrac{2}{5}\)và\(\dfrac{9}{15}\)
Câu 7: Cặp phân số nào sau đây không có cùng mẫu số:
A.\(\dfrac{3}{15}\)và\(\dfrac{9}{15}\) B.\(\dfrac{3}{15}\)và\(\dfrac{8}{15}\) C.\(\dfrac{3}{15}\)và\(\dfrac{9}{25}\) D.\(\dfrac{2}{15}\)và\(\dfrac{9}{15}\)
\(\text{Câu 1: Cho các số A và B. Hãy tính tỉ số }\)\(\dfrac{A}{B}\) \(biết:\)
\(a\)) \(A=\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57};\)
\(B=\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)
\(b\)) \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021};\)
\(B=\dfrac{2020}{1}+\dfrac{2019}{2}+\dfrac{2018}{3}+...+\dfrac{1}{2020}\)
a) Ta có: \(A=\dfrac{4}{7\cdot31}+\dfrac{6}{7\cdot41}+\dfrac{9}{10\cdot41}+\dfrac{7}{10\cdot57}\)
\(=\dfrac{20}{31\cdot35}+\dfrac{30}{35\cdot41}+\dfrac{45}{41\cdot50}+\dfrac{35}{50\cdot57}\)
\(=5\left(\dfrac{4}{31\cdot35}+\dfrac{6}{35\cdot41}+\dfrac{9}{41\cdot50}+\dfrac{7}{50\cdot57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{35}+\dfrac{1}{35}-\dfrac{1}{41}+\dfrac{1}{41}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
Ta có: \(B=\dfrac{7}{19\cdot31}+\dfrac{5}{19\cdot43}+\dfrac{3}{23\cdot43}+\dfrac{11}{23\cdot57}\)
\(=\dfrac{14}{31\cdot38}+\dfrac{10}{38\cdot43}+\dfrac{6}{43\cdot46}+\dfrac{22}{46\cdot57}\)
\(=2\left(\dfrac{7}{31\cdot38}+\dfrac{5}{38\cdot43}+\dfrac{3}{43\cdot46}+\dfrac{11}{46\cdot57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{38}+\dfrac{1}{38}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
Suy ra: \(\dfrac{A}{B}=\dfrac{5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)}{2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)}=\dfrac{5}{2}\)
\(\dfrac{3}{5}+\dfrac{a}{b}=5\) \(\dfrac{a}{b}-\dfrac{4}{7}=\dfrac{5}{6}\) \(\dfrac{2}{3}\) x \(\dfrac{a}{b}=\dfrac{3}{5}\)
\(\dfrac{a}{b}:\dfrac{2}{7}=3+\dfrac{2}{3}\) \(\dfrac{7}{5}-\dfrac{a}{b}=\dfrac{2}{5}:2\)
\(\dfrac{3}{5}:\dfrac{a}{b}=\dfrac{2}{7}\) ÉT O ÉT
a)\(\dfrac{a}{b}=5-\dfrac{3}{5}=\dfrac{25}{5}-\dfrac{3}{5}=\dfrac{22}{5}\)
b)\(\dfrac{a}{b}=\dfrac{5}{6}+\dfrac{4}{7}=\dfrac{35}{42}+\dfrac{24}{42}=\dfrac{59}{42}\)
c)\(\dfrac{a}{b}=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{9}{10}\)
d)\(\dfrac{a}{b}=3\times\dfrac{2}{7}=\dfrac{6}{7}\)
e)\(\dfrac{a}{b}=\dfrac{7}{5}-\left(\dfrac{2}{5}\times\dfrac{1}{2}\right)=\dfrac{7}{5}-\dfrac{1}{5}=\dfrac{6}{5}\)
bài 1 ( 2 điểm ):
a) tìm số tự nhiên X sao cho: \(4\dfrac{3}{5}\) + \(\dfrac{7}{10}\) < X < \(\dfrac{20}{3}\)
b) tìm X biết: X - \(2019\dfrac{2}{13}\) = \(3\dfrac{7}{26}\) + \(4\dfrac{7}{52}\)
bài 2: (1 điểm): tính
\(\dfrac{7,8\text{×}1,001\text{ }\text{×}0,625}{18,2\text{×}0,26\text{×}0,125}\)
bài 3 (2 điểm): tìm tất cả các số thập phân khác 0 thỏa mãn: số phần nguyên là số có 1 chữ số, phần thập phân chỉ gồm 2 chữ số giống nhau mà tổng của 2 chữ số đó bằng chữ số ở phần nguyên. Hãy tính tổng các chữ số vừa tìm được.
bài 4: 1 đoàn tàu hỏa dài 85 m qua cầu với vận tốc 54km/giờ. Từ lúc đầu tàu lên cầu đnế lúc toa cuối cùng qua khỏi cầu mất hết 1 phút 15 giây. Hỏi cầu dài bao nhiêu mét?
bài 5: một mảnh vườn hình thang có đáy bé là 36,45 m .Đáy lớn bằng 4/3 đáy bé, chiều cao bằng 2/3 tổng hai đáy. Tính diện tích mảnh vườn đó
bài 6:có bao nhiêu hình chữ nhật trong hình vẽ sau?
bài 7: (1 điểm):
a) điền số thích hợp vào dấu? và giải thích quy luật:
4, 5, 7, 11,19, ?, ? ....
trong hình vẽ dưới đây có 8 hình vuông nhỏ. Hỏi có bao nhiêu điểm A đến điểm C, men theo cạnh các hình vuông nhỏ, sao cho mỗi đường đều không qua đểm B và có độ dài gấp 6 lần độ dài cạnh hình vuông nhỏ.
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
Cho \(a,b,c>0\). CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt[3]{\dfrac{b}{c+a}}+\sqrt[4]{\dfrac{c}{a+b}}\ge\dfrac{7}{12}\cdot2^{\dfrac{6}{7}}\cdot3^{\dfrac{4}{7}}\)
Nhìn người hỏi là biết bài này khó rồi. Không liên quan nhưng anh Thắng đẹp zai làm giúp em bài này :)) https://hoc24.vn/hỏi-đáp/question/592811.html
1.Tính
\(a,5\text{x}\dfrac{7}{3}\) \(b,\dfrac{13}{4}:7\)
2.Tính
\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\) \(b,\dfrac{9}{7}-\dfrac{5}{11}\text{x}\dfrac{11}{7}\) \(c,\dfrac{3}{5}\text{x}\dfrac{5}{7}\text{+}\dfrac{4}{7}\) \(d,\dfrac{7}{9}\text{x}\dfrac{2}{5}:\dfrac{3}{11}\) e,\(\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)
g,\(\dfrac{4}{9}:\dfrac{3}{5}\text{x}\dfrac{2}{11}\) h,\(\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)
\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)
\(\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}=\dfrac{60}{140}+\dfrac{56}{140}+\dfrac{105}{140}=\dfrac{221}{140}\)
\(\dfrac{9}{7}-\dfrac{5}{11}x\dfrac{11}{7}=\dfrac{9}{7}-\dfrac{5}{7}=\dfrac{4}{7}\)
cho tanα = 3. Tính A = sin2α
\(\text{A}.\dfrac{3}{10}\) \(\text{B}.\dfrac{7}{10}\) \(\text{C}.\dfrac{1}{10}\) \(\text{D}.\dfrac{9}{10}\)
cho x≠0 thõa mãn x=\(\dfrac{1}{x}=a\) là một hằng số .Tính theo a giá trị của biểu thức :
\(A=x^3+\dfrac{1}{x^3}\), \(B=x^6+\dfrac{1}{x^6}\), \(C=x^7+\dfrac{1}{x^7}\)
Sửa đề: \(x+\dfrac{1}{x}=a\)
\(A=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)=a^3-3a\\ B=x^6+\dfrac{1}{x^6}=\left(x^3+\dfrac{1}{x^3}\right)^2-2=\left(a^3-3a\right)^2-2=a^6-6a^4+9a^2-2\\ C=x^7+\dfrac{1}{x^7}=\left(x^3+\dfrac{1}{x^3}\right)\left(x^4+\dfrac{1}{x^4}\right)-\left(x+\dfrac{1}{x}\right)\)
Mà \(x^4+\dfrac{1}{x^4}=\left(x^2+\dfrac{1}{x^2}\right)^2-2=\left[\left(x+\dfrac{1}{x}\right)^2-2\right]^2-2=\left(a^2-2\right)^2-2=a^4-4a^2+2\)
\(\Leftrightarrow C=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a=...\)