Ta có \(\left\{{}\begin{matrix}a+b=\dfrac{-2+\sqrt{3}}{3}+\dfrac{-2-\sqrt{3}}{3}=-\dfrac{4}{3}\\ab=\dfrac{\left(-2+\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{9}=\dfrac{1}{9}\end{matrix}\right.\)
\(\left(a+b\right)^2=a^2+b^2+2ab=16\\ \Leftrightarrow a^2+b^2=\dfrac{16}{9}-2\cdot\dfrac{1}{9}=\dfrac{14}{9}\left(1\right)\\ \left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=-\dfrac{64}{27}\\ \Leftrightarrow a^3+b^3+\dfrac{1}{3}\cdot\left(-\dfrac{4}{3}\right)=-\dfrac{64}{27}\\ \Leftrightarrow a^3+b^3=-\dfrac{64}{27}+\dfrac{4}{9}=-\dfrac{52}{27}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(a^2+b^2\right)\left(a^3+b^3\right)=a^5+b^5+a^2b^2\left(a+b\right)=\dfrac{14}{9}\cdot\left(-\dfrac{52}{27}\right)=-\dfrac{728}{243}\\ \Leftrightarrow a^5+b^5+\dfrac{1}{81}\cdot\left(-\dfrac{4}{3}\right)=-\dfrac{728}{243}\\ \Leftrightarrow a^5+b^5=-\dfrac{728}{243}+\dfrac{4}{243}=-\dfrac{724}{243}\left(3\right)\)
\(\left(1\right)\left(3\right)\Rightarrow\left(a^2+b^2\right)\left(a^5+b^5\right)=a^7+b^7+a^2b^2\left(a^3+b^3\right)=\dfrac{14}{9}\cdot\left(-\dfrac{724}{243}\right)=-\dfrac{10136}{2187}\\ \Leftrightarrow a^7+b^7+\dfrac{1}{81}\cdot\left(-\dfrac{52}{27}\right)=-\dfrac{10136}{2187}\\ \Leftrightarrow a^7+b^7=-\dfrac{10136}{2187}-\dfrac{52}{2187}=-\dfrac{10188}{2187}=\dfrac{1132}{243}\)