So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Rút gọn các biểu thức :
A=\(\dfrac{1}{\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
B= \(\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2015}+\sqrt{2017}}\)
giúp mk tính
a,\(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)
b,(\(\sqrt{5}+\sqrt{2}\)) (\(3\sqrt{2}-1\))
c,\(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
d, \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
e, \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
f, \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
bài 2
a, \(\sqrt{9-4\sqrt{5}}\)
b,\(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
c\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
d, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
e,\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)+\(\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
f, \(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
rút gọn :\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}\)
Trục căn thức ở mẫu
a)\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)
b)\(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
c)\(\dfrac{3+4\sqrt{3}}{\left(\sqrt{6}+\sqrt{2}\right)-\sqrt{5}}\)
2 . rút gọn biểu thức
a. \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b. \(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
c. \(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\)
d. \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
e. \(5\sqrt{\dfrac{1}{5}+}\dfrac{1}{5}\sqrt{20}+\sqrt{5}\)
f. \(\sqrt{\dfrac{1}{5}}+\sqrt{4,5}+\sqrt{12,5}\)
g. \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\dfrac{1}{3}}\)
m. \(3\sqrt{5a}-\sqrt{20a}+\sqrt{a}+4\sqrt{45a}\)
n. \(3\sqrt{8}-\sqrt{18}-5\sqrt{\dfrac{1}{2}}+\sqrt{50}\)
i. \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}+\sqrt{63}-\sqrt{162}\)
Tính:
\(a.\) \(A=\sqrt{12}-2\sqrt{48}+\dfrac{7}{5}\sqrt{75}\)
\(b.\) \(B=\sqrt{14-6\sqrt{5}}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(c.\) \(C=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(d.\) \(D=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}-5}{\sqrt{5}}-\dfrac{11}{2\sqrt{5}+3}\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
cho \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
1, rút gọn P
2, tìm x để \(P\ge0\)
tính P khi \(x=-\sqrt{3-2\sqrt{2}}+\dfrac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}\)