Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Dương Thùy Linh
Xem chi tiết
Cỏ dại
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
ngonhuminh
14 tháng 4 2018 lúc 13:31

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)

\(f\left(x\right)=2x^6+3x^4+x^2+1\)

b) \(2.1+3.1+1+1=7\)

c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)

=> f(x) >=1 => dpcm

Anh Triêt
Xem chi tiết
Ngô Thanh Sang
28 tháng 3 2018 lúc 20:41

Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)

Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)

Sách Giáo Khoa
Xem chi tiết
Lynk Lee
18 tháng 12 2017 lúc 16:37

f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2

Đa thức có bậc là 5

g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2

Đa thức có bậc là 8.

Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.



Hermione Granger
Xem chi tiết
2611
25 tháng 5 2022 lúc 13:43

`a)P(x)+Q(x)=3x^4-x^3+4x^2+2x+1-2x^4-x^2+x-2`

                   `=x^4-x^3+3x^2+3x-1`

`b)Q(x)-H(x)=-2x^4-2`

`=>H(x)=Q(x)-(-2x^4-2)`

`=>H(x)=-2x^4-x^2+x-2+2x^4+2`

`=>H(x)=-x^2+x`

`c)` Cho `H(x)=0`

`=>-x^2+x=0`

`=>-x(x-1)=0`

`@TH1:-x=0=>x=0`

`@TH2:x-1=0=>x=1`

Nguyen My Van
25 tháng 5 2022 lúc 13:43

\(a,P\left(x\right)+Q\left(x\right)=x^4-x^3+3x^2+3x-1\)

\(b,H\left(x\right)=Q\left(x\right)+2x^4+2=-2x^4-x^2+x-2+2x^4+2=-x^2+x\)

\(c,H\left(x\right)=-x^2+x=x\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

David Trịnh
25 tháng 5 2022 lúc 13:53

a)\(P\left(x\right)+Q\left(x\right)=x^4-x^3+3x^2-1+3x\)

b)\(H\left(x\right)=Q\left(x\right)+2x^4+2\)

\(H\left(x\right)=-2x^4-x^2+x-2+2x^4+2\)

\(H\left(x\right)=-x^2+x\)

c) cho H(x) = 0

\(=>-x^2+x=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Anh PVP
Xem chi tiết
Sahara
24 tháng 4 2023 lúc 20:38

\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm

Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:41

Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x

=>Q(x) vô nghiệm

Big City Boy
Xem chi tiết
Thùy Linh
Xem chi tiết
Nguyễn Thanh Hằng
29 tháng 3 2018 lúc 21:17

\(f\left(x\right)=4x^3+4x^4-x^2+3x^2-3x^4-3x^3\)

\(\Leftrightarrow f\left(x\right)=\left(4x^3-3x^3\right)+\left(4x^4-3x^4\right)+\left(-x^2+3x^2\right)\)

\(\Leftrightarrow f\left(x\right)=x^3+x^4+2x^2\)

\(f\left(x\right)=0\)

\(\Leftrightarrow x^3+x^4+2x^2=0\)

\(\Leftrightarrow x^2\left(x+x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\end{matrix}\right.\)

Vậy f(x) chỉ có 1 nghiệm

Phạm Khánh Linh
Xem chi tiết
Darlingg🥝
27 tháng 12 2019 lúc 11:28

\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)

\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)

\(-\left(2x^4-x^3+x^2+2x+1\right)\)

\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)

\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)

\(=2x^4+4x^3-2x\)

Khách vãng lai đã xóa