Tìm giới hạn sau: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x}{x}\)
Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{x^2+x+1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x+1}{3x^2-x+5}\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x+5}{\sqrt{x^2+x}}\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{-5x+1}{\sqrt{3x^2+1}}\)
`a)lim_{x->+oo}[x+1]/[x^2+x+1]`
`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`
`=0`
`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`
`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`
`=0`
`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`
`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`
`=-3`
`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`
`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`
`=-5/3`
BÀI 3. Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^3-5x^2+1}{7x^2-x+4}\)
b) \(\lim\limits_{x\rightarrow+\infty}x\sqrt{\dfrac{x^2+2x+3}{3x^4+4x^2-5}}\)
a: \(=lim_{x->-\infty}\dfrac{2x-5+\dfrac{1}{x^2}}{7-\dfrac{1}{x}+\dfrac{4}{x^2}}\)
\(=\dfrac{2x-5}{7}\)
\(=\dfrac{2}{7}x-\dfrac{5}{7}\)
\(=-\infty\)
b: \(=lim_{x->+\infty}x\sqrt{\dfrac{1+\dfrac{1}{x}+\dfrac{3}{x^2}}{3x^2+4-\dfrac{5}{x^2}}}\)
\(=lim_{x->+\infty}x\sqrt{\dfrac{1}{3x^2+4}}=+\infty\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)
\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)
b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Tính giới hạn sau:
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n^3}\left(1+2^2+...+\left(n-1\right)^2\right)\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}[\left(x+\dfrac{a}{n}\right)+\left(x+\dfrac{2a}{n}\right)+...+\left(x+\dfrac{\left(n-1\right)a}{n}\right)]\)
3) \(\lim\limits_{n\rightarrow\infty}\dfrac{1^3+2^3+...+n^3}{n^4}\)
1.
Trước hết bạn nhớ công thức:
$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
Áp vào bài:
\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)
\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)
\(=1.\frac{1}{3}=\frac{1}{3}\)
2.
\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)
\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)
\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)
\(=x+a\)
3.
Trước tiên ta có công thức:
$1^3+2^3+....+n^3=(1+2+3+...+n)^2=\frac{n^2(n+1)^2}{4}$
Chứng minh: https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
\(\lim \frac{1^3+2^3+...+n^3}{n^4}=\lim \frac{n^2(n+1)^2}{4n^4}\\ =\lim \frac{(n+1)^2}{4n^2}=\frac{1}{4}\lim (1+\frac{1}{n})^2=\frac{1}{4}.1=\frac{1}{4}\)
tìm giới hạn \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}\)
Sao anh không thấy đề cụ thể ta!
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{\dfrac{4x^2+2x-1}{x^2}}-\dfrac{x}{x}}{\dfrac{3x-2}{x}}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4+\dfrac{2}{x}-\dfrac{1}{x^2}}-1}{3-\dfrac{2}{x}}=-\dfrac{4-1}{3}=-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4+\dfrac{2}{x}-\dfrac{1}{x^2}}+1}{-3+\dfrac{2}{x}}=\dfrac{\sqrt{4}+1}{-3}=-1\).
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}\)
c) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}\)
d) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
f) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tính các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-1}{x+1}\)
b) \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{x+2}\)
c) \(\lim\limits_{x\rightarrow6}\dfrac{\sqrt{x+3}-3}{x-6}\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-6}{4-x}\)
e) \(\lim\limits_{x\rightarrow+\infty}\dfrac{17}{x^2+1}\)
f) \(\lim\limits_{x\rightarrow+\infty}\dfrac{-2x^2+x-1}{3+x}\)
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{\dfrac{3}{x}-\sqrt{1+\dfrac{7}{x^2}}}\)
\(=\dfrac{1}{0-\sqrt{1+0}}=\dfrac{1}{-1}=-1\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)
\(=\dfrac{\sqrt{x^2\left(1-\dfrac{1}{x}\right)}-\sqrt{x^2\left(4+\dfrac{1}{x^2}\right)}}{2x+3}\)
\(=\dfrac{-x\cdot\sqrt{1-\dfrac{1}{x}}+x\cdot\sqrt{4+\dfrac{1}{x^2}}}{x\left(2+\dfrac{3}{x}\right)}\)
\(=\dfrac{-\sqrt{1-\dfrac{1}{x}}+\sqrt{4+\dfrac{1}{x^2}}}{2+\dfrac{3}{x}}=\dfrac{-1+2}{2}=\dfrac{1}{2}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+2}-x\right)\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)
a: \(\lim\limits_{x\rightarrow+\infty}\left[x\left(\sqrt{x^2+2}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+2-x^2}{\sqrt{x^2+2}+x}\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+2}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2}{\sqrt{1+\dfrac{2}{x^2}}+1}=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2\left(3-\dfrac{4}{x}+\dfrac{6}{x^2}\right)}{x\left(1-\dfrac{2}{x}\right)}\)
\(=\lim\limits_{x\rightarrow-\infty}\left[x\cdot\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}\right]\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}x=-\infty\\\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}=\dfrac{3-0+0}{1-0}=\dfrac{3}{1}=3>0\end{matrix}\right.\)