Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)
a: \(\lim_{x\to+\infty}\frac{\sqrt{x^6+2}}{3x^3-1}=\lim_{x\to+\infty}\frac{x^3\left(\sqrt{1+\frac{2}{x^6}}\right)}{x^3\left(3-\frac{1}{x^3}\right)}\)
\(=\lim_{x\to+\infty}\frac{\sqrt{1+\frac{2}{x^6}}}{3-\frac{1}{x^3}}=\frac13\)
c: \(2x^3-5x-4=2\cdot1^3-5\cdot1-4=2-5-4=2-9=-7<0\)
\(\left(x+1\right)^2=\left(1+1\right)^2=2^2=4\)
\(\lim_{x\to1}\frac{2x^3-5x-4}{\left(x+1\right)^2}=\frac{-7}{4}\)