TÌM GIÁ TRỊ NHỎ NHẤT
A=/x-2/+5
tìm giá trị lon nhat
B=12-/x+4/
tìm x để được giá trị A nhỏ nhất
A=|x-2/3|-4
\(\left|x-\dfrac{2}{3}\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
Bài 1:Tìm Giá trị nhỏ nhất
A=3(x+1)^2+5
B=2|x+y|+3x^2-10
C=12(x-y)^2 +x^2-6
D= -5/2^2+1
Bài 2:Tìm Giá trị lớn nhất
A=5-2x
B=3-(x+1)^2-3(x+2y)^2
C=-12-3|x+1|-2(y-1)^2
D=5/2x^2-3
F=-5/3-2x^2
Bài 1:
A = 3(x + 1)2 + 5
Ta có: (x + 1)2 \(\ge\) 0 Với mọi x
\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 3(x + 1)2 + 5 \(\ge\) 5 với mọi x
Hay A \(\ge\) 5
Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1
Vậy...
B = 2|x + y| + 3x2 - 10
Ta có: 2|x + y| \(\ge\) 0 với mọi x, y
3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y
Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0
\(\Rightarrow\) x = y = 0
Vậy ...
C = 12(x - y)2 + x2 - 6
Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y
x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = y = 0
Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất
Bài 2:
Phần A ko rõ đầu bài!
B = 3 - (x + 1)2 - 3(x + 2y)2
Ta có: -(x + 1)2 \(\le\) 0 với mọi x
-3(x + 2y)2 \(\le\) 0 với mọi x, y
\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)2 \(\le\) 3 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0
\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)
Vậy ...
C = -12 - 3|x + 1| - 2(y - 1)2
Ta có: -3|x + 1| \(\le\) 0 với mọi x
-2(y - 1)2 \(\le\) 0 với mọi y
\(\Rightarrow\) -12 - 3|x + 1| - 2(y - 1)2 \(\le\) -12 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0
\(\Rightarrow\) x = -1; y = 1
Vậy ...
Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa
F = \(\dfrac{-5}{3}\) - 2x2
Ta có: -2x2 \(\le\) 0 với mọi x
\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy ...
Chúc bn học tốt!
Tìm giá trị nhỏ nhất
A=l x-2 l + l x-5 l
\(A=\left|x-2\right|+\left|x-5\right|\\ A=\left|x-2\right|+\left|5-x\right|\)
Có \(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|\\ \Leftrightarrow A\ge\left|3\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)\left(5-x\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\le5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\ge5\end{matrix}\right.\end{matrix}\right.\)
Trường hợp bên dưới vô lý, loại. Vậy GTNN của \(A=3\) khi \(2\le x\le5\)
Áp dụng BĐT `|A|+|B|>=|A+B|` và dấu = `<=>AB>=0`
`=>A=|x-2|+|5-x|>=|x-2+5-x|=3`
Dấu "=" `<=>(x-2)(5-x)>=0`
`<=>(x-2)(x-5)<=0`
`<=>2<=x<=5`
Tìm giá trị nhỏ nhất và giá trị lớn nhất
a, A = y - 2x + 5 với 36x2 + 16y2 = 9
b, B = 2x - y - 2 với \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
Tìm giá trị nhỏ nhất
a)\(\dfrac{\text{3x^2-2x+3}}{\text{x^2+1}}\)
b)\(\dfrac{\text{3x^2-4x+4}}{\text{x^2+2}}\)
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất
a)A=\(\left(1\right)^2\)+2008
b)B=\(\)\(\left|x+4\right|\)+1996
b) Ta có: \(\left|x+4\right|\ge0\forall x\)
\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)
Dấu '=' xảy ra khi x=-4
Tìm giá trị nhỏ nhất
A=xy(x−2)(y+6)+13x^2+4y^2−26x+24y+2020.
Tìm giá trị nguyên của x để biểu thức sau đạt giá trị nhỏ nhất
A=|x-9|+10
giúp mik na mik đag cần rất là gấp
`|x-9|>=0`
`=>|x-9|+10>=10`
Dấu "=" xảy ra khi `x-9=0<=>x=9(TM\ x in Z)`
x−9|≥0|x-9|≥0
⇒|x−9|+10≥10⇒|x-9|+10≥10
Dấu "=" xảy ra khi x−9=0⇔x=9(TM x∈Z)
Giải:
A=|x-9|+10
Xét thấy: |x-9| ≥ 0 với mọi x
⇒|x-9|+10 ≥ 0+10
A ≥ 10
A nhỏ nhất =10 khi và chỉ khi
|x-9|=0
x-9=0
x=0+9
x=9
Chúc bạn học tốt!
Bài 1:Tìm Giá trị nhỏ nhất
A=3(x+1)^2+5
B=2|x+y|+3x^2-10
C=12(x-y)^2 +x^2-6
D= -5/2^2+1
Bài 2:Tìm Giá trị lớn nhất
A=5-2x
B=3-(x+1)^2-3(x+2y)^2
C=-12-3|x+1|-2(y-1)^2
D=5/2x^2-3
F=-5/3-2x^2
Các bạn làm được câu nào thì làm nhé còn làm được hết thì mình cảm mơn rất nhiều nha