Tìm m để 3 điểm A(2021;2023); B(2023; 2025) và C(m + 3; - 5m - 1) thăng hàng
Cho hàm số y = (m-3)x +2021 (m ≠ 3) (1)
a, Tìm m để đồ thị hàm số (1) đi qua A(1;2025)
b, Timg m để đồ thị hàm số (1) cắt (P): y= -x2 tại hai điểm phân biệt
a) Vì đồ thị hàm số (1) đi qua A(1;2025) nên ta có:
\(\left(m-3\right)1+2021=2025\\ \Leftrightarrow m-3=4\\ \Leftrightarrow m=7\)
Cho đường thẳng (d): y=2mx+2m-3 và Parabol (P) y=x2.
a) Tìm m để đường thẳng (d) đi qua điểm A(1;5)
b) Tìm m để đường thẳng d tiếp xúc với Parabol (P)
(Phú Thọ 2021-2022)
a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)
<=> \(5=4m-3\Leftrightarrow m=2\)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-2m+3=0\)
\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)
Để (P) tiếp xúc (d) thì pt có nghiệm kép khi
\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)
Cho hàm số y = (m-3)x +2021 (m ≠ 3) (1)
Tim m để đồ thị hàm số (1) cắt (P): y= -x2 tại hai điểm phân biệt
Phương trình hoành độ giao điểm của (1) và (P) là:
\(\left(m-3\right)x+2021=-x^2\)
\(\Leftrightarrow x^2+\left(m-3\right)x+2021=0\)
\(\text{Δ}=\left(m-3\right)^2-4\cdot2021\)
\(\Leftrightarrow\text{Δ}=m^2-6m+9-8084=m^2-6m-8075\)
Để (1) cắt (P) tại hai điểm phân biệt thì Δ>0
\(\Leftrightarrow m^2-6m-8075>0\)
\(\Leftrightarrow m^2-6m+9>8084\)
\(\Leftrightarrow\left(m-3\right)^2>8084\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>2\sqrt{2021}\\m-3< -2\sqrt{2021}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>2\sqrt{2021}+3\\m< -2\sqrt{2021}+3\end{matrix}\right.\)
cho mình hỏi với ạ
1.Tìm x,y để giá trì M = (x-2021)^2022+(2021-y)^2020 bằng 0
2.Chứng minh biểu thức A = (2x-1)^2 + 4x^4y^2 + 2021 luôn nhận giá trị dường với mọi x,y
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
Cho hàm số bậc nhất y = (m – 2)x + 1 ( m ≠ 2). Tìm m để đồ thị hàm số đi qua điểm M(2021; 2022). Với giá trị m tìm được hãy cho biết hàm số đã cho đồng biến hay nghịch biến trên R. giúp mk với nhé
Để đồ thị hàm số đi qua điểm \(M\left(2021;2022\right)\)
Thay \(x=2021;y=2022\) ta có:
\(2022=2021\left(m-2\right)+1\)
\(\Rightarrow2021\left(m-2\right)=2021\Rightarrow m-2=1\Rightarrow m=3\)
Khi đó ta có hàm số: \(y=x+1\)
Do \(1>0\) nên hàm số đồng biến trên R.
a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)
b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)
c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?
d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự luận giúp em ạ)
A.-1 B.1 C.2 D.0
e. Cho hàm số \(f\left(x\right)=x^3+2x-1\) .Xét phương trình f(x) = 0 (1), trong các mệnh đề sau tìm mệnh đề sai? giải tự luận giúp em ạ
A. (1) có nghiệm rên khoảng (-1;1)
B. (1) Không có nghiệm trên khoảng (-5;3)
C. (1) có nghiệm trên R
D. (1) có nghiệm trên khoảng (0;1)
a.
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)
\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)
\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)
Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn
b.
\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)
\(=1+1+1=3\)
\(f\left(-1\right)=3a\)
Hàm gián đoạn tại điểm \(x_0=-1\) khi:
\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)
\(\Rightarrow a\ne1\)
c.
Tứ diện ABCD đều \(\Rightarrow\Delta ABD\) đều
\(\widehat{\left(\overrightarrow{DA};BD\right)}=180^0-\widehat{\left(\overrightarrow{DA};\overrightarrow{DB}\right)}=180^0-\widehat{ADB}=180^0-60^0=120^0\)
d.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^2-1}{2-2x}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{-2\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{x+1}{-2}=\dfrac{1+1}{-2}=-1\)
Để hàm liên tục tại \(x=1\)
\(\Rightarrow f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)=-1\)
e.
Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\) ; \(f\left(1\right)=2>0\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\)
Do \(\left(0;1\right)\) đồng thời là tập con của \(\left(-1;1\right)\) ; \(\left(-5;3\right)\) và R nên \(f\left(x\right)\) cũng có nghiệm trên các khoảng này
Vậy B là đáp án sai
BÀI 3. Cho biểu thức f(a)= 2 – 3m – 2+3(m là tham số) Có bao nhiêu giá trị nguyên của tham số m trên |–2021:2021| để f(x) luôn không âm với mọi giá trị của x
cho đơn thức A= \(\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0 \)
a)thu gọn đơn thức A
b)tìm hệ số,phần biến vầ bậc của đơn thức A
c)tìm z để A ≥ 0
\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)
\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)
\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)
\(\text{Phần biến là:}\left(x,y,z\right)\)
\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)
\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)
\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)
\(\Rightarrow Z\in N\)
Tìm `m` để hàm số \(y=\left(m^2-4m+4\right)x-2021\) đồng biến trên `R`.
\(m^2-4m+4=m^2-2\cdot m\cdot2+2^2=\left(m-2\right)^2>=0\forall m\)
Để hàm số \(y=\left(m^2-4m+4\right)x-2021\) đồng biến trên R thì
\(m^2-4m+4>0\)
=>\(\left(m-2\right)^2>0\)
=>m-2<>0
=>m<>2
em hỏi câu này dc ko ạ?
Tìm số dư khi A= 3^2021+4^2021 chia cho 11
Tìm số dư khi A= 3^2021+4^2021 chia cho 13
Lời giải:
Theo định lý Fermat nhỏ thì: $3^{10}\equiv 1\pmod {11}; 4^{10}\equiv 1\pmod {11}$
$\Rightarrow$:
$3^{2021}=(3^{10})^{202}.3\equiv 3\pmod {11}$
$4^{2021}=(4^{10})^{202}.4\equiv 4\pmod {11}$
$\Rightarrow A=3^{2021}+4^{2021}\equiv 3+4\equiv 7\pmod {11}$
Tức $A$ chia $11$ dư $7$
---------------------------------
Tương tự:
$3^{12}\equiv 1\pmod {13}$
$\Rightarrow 3^{2021}=(3^{12})^{168}.3^5\equiv 3^5\equiv 9\pmod {13}$
Tương tự: $4^{2021}\equiv 4^5\equiv 10\pmod {13}$
$\Rightarrow A\equiv 9+10\equiv 6\pmod {13}$
Vậy $A$ chia $13$ dư $6$