Tìm \(m\) để phương trình \(4^x-2^{x+1}+m+2=0\) có 2 nghiệm phân biệt \(x_1\), \(x_2\) \(>-1\).
Cho phương trình \(x^2-2\left(m-1\right)x+4m+4=0\) Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1+x_2^2=5\)
a. để phương trình có 2 nghiệm phân biệt thì △ > 0
\(\text{△}=b^2-4ac=\left[-2\cdot\left(m-1\right)\right]^2-4\cdot1\cdot\left(4m+1\right)\\ \text{△}=4\cdot\left(m-1\right)^2-4\cdot\left(4m+1\right)\\ \text{△}=4\cdot\left[\left(m-1\right)^2-\left(4m+1\right)\right]\\ \text{△}=4\cdot\left[m^2-2m+1-4m-1\right]\\ \text{△}=4\cdot\left[m^2-m\right]=4m\cdot\left(m-6\right)\)
vậy m > 6 hoặc m < 0
b. áp dụng định lý vi-et ta có:
\(x_1+x_2=-b< =>2\left(m-1\right)\\ x_1x_2=c< =>4m+1\)
theo đề: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(=>\left[2\left(m-1\right)\right]^2-2\left(4m+1\right)=5\\ 4\left(m-1\right)^2-2\left(4m+1\right)=5\\ 4\left(m^2-2m+1\right)-8m-2=5\\ 4m^2-8m+4-8m-2=5\\ 4m^2-16m-3=0\\ =>\left[{}\begin{matrix}m=\dfrac{4+\sqrt{19}}{2}\left(KTM\right)\\m=\dfrac{4-\sqrt{19}}{2}\left(TM\right)\end{matrix}\right.\)
vậy m cần tìm là: \(\dfrac{4-\sqrt{19}}{2}\)
Cho phương trình: x2 - (m + 2).x + 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1.x_2}{4}\)
Δ=(m+2)^2-4*2m=(m-2)^2
Để PT có hai nghiệm pb thì m-2<>0
=>m<>2
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{m+2}{2m}=\dfrac{2m}{4}=\dfrac{m}{2}\)
=>2m^2=2m+4
=>m^2-m-2=0
=>m=2(loại) hoặc m=-1
Chi phương trình \(^{x^2-x+m=0}\)(1)
tìm m để phương trình (1) có 2 nghiệm phân biệt \(_{x_1;x_2}\)thỏa mãn
\(\left(x_1^2+x_2+m\right)\)\(\left(x_2^2+x_1+m\right)\)= \(m^2\)-m -1
giúp mik vs ạ :((
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))
b2: ➝x1+x2 =-2m-1 (1)
→ x1.x2=m^2-1 (2)
b3: biến đổi : (x1-x2)^2 = x1-5x2
↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0
↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0
↔x2= -m-1
B4: thay x2= -m-1 vào (1) → x1 = -m
Thay x2 = -m-1, x1 = -m vào (2)
→m= -1
B5: thử lại:
Với m= -1 có pt: x^2 -x =0
Có 2 nghiệm x1=1 và x2=0 (thoả mãn)
Tìm m để phương trình: \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
Để pt có 2 nghiệm pb khác 0:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)>0\\x_1x_2=\dfrac{m^2-4m+1}{3}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+1>0\\m^2-4m+1\ne0\end{matrix}\right.\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4\left(m-1\right)}{3}\\x_1x_2=\dfrac{m^2-4m+1}{3}\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1+x_2=0\\x_1x_2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{4\left(m-1\right)}{3}=0\\\dfrac{m^2-4m+1}{3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\\m=5\end{matrix}\right.\)
Thế vào hệ điều kiện (1) kiểm tra chỉ có \(\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\) thỏa mãn
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
Cho phương trình: $x^2 + 2 ( m - 2) x + m^2 - 4m = 0$ (1) (với $x$ là ẩn số).
a. Giải phương trình (1) khi $m = 1$.
b. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của $m$.
c. Tìm các giá trị của $m$ để phương trình (1) có hai nghiệm phân biệt $x_1$, $x_2$ thỏa mãn điều kiện $\dfrac3{x_1} + x_2 = \dfrac3{x_2} + x_1$.
a, x = 3 , x= -1
b, m = 3 , m = 1
Cho \(x^2-\left(m+1\right)x-4=0\)
Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn: \(x_2-x_1=5\left|x_1\right|\)