\(\left(x+2y\right)^5\)
Thực hiện phép tính
\(\left[5\left(2y-x\right)^4+\left(x-2y\right)^2+2y-x\right]:\left(x-2y\right)\)
\(=\dfrac{5\left(x-2y\right)^4+\left(x-2y\right)^2-\left(x-2y\right)}{x-2y}\)
=5(x-2y)^3+(x-2y)-1
\(\left[5\left(2y-x\right)^4+\left(x-2y\right)^2+2y-x\right]:\left(x-2y\right)\)
Thực hiện phép tính
\(\dfrac{5\cdot\left(2y-x\right)^4+\left(2y-x\right)^2+\left(2y-x\right)}{x-2y}=\dfrac{5\cdot\left(x-2y\right)^4+\left(x-2y\right)^2-\left(x-2y\right)}{x-2y}=5\cdot\left(x-2y\right)^3+\left(x-2y\right)-1.\)
Khi hàm số \(\left(ax-by\right)^n\) với n là số chẵn thì ax và by có thể đổi chỗ cho nhau nhưng không thay đổi kết quả
a, \(\text{[}\left(x-y\right)^3+3\left(x-y\right)\text{]}:\dfrac{1}{3}\left(x-y\right)\)
b, \(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
c, \(\text{[}5\left(x+2y\right)^6-6\left(x+2y\right)^5\text{]}:2\left(x+2y\right)^4\)
a: \(=\left(x-y\right)^3:\dfrac{1}{3}\left(x-y\right)+3\left(x-y\right):\dfrac{1}{3}\left(x-y\right)\)
=3(x-y)^2+9
b: \(=\dfrac{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}{2x-3y}=4x^2+6xy+9y^2\)
c: \(=\dfrac{5\left(x+2y\right)^6}{2\left(x+2y\right)^4}-\dfrac{6\left(x+2y\right)^5}{2\left(x+2y\right)^4}=\dfrac{5}{2}\left(x+2y\right)^2-3\left(x+2y\right)\)
Viết các biểu thức sau thành đa thức:
a) \(\left( {3x - 5} \right)\left( {3x + 5} \right)\) b) \(\left( {x - 2y} \right)\left( {x + 2y} \right)\) c) \(\left( { - x - \dfrac{1}{2}y} \right)\left( { - x + \dfrac{1}{2}y} \right)\)
a) \(\left(3x-5\right)\left(3x+5\right)\)
\(=\left(3x\right)^2-5^2\)
\(=9x^2-25\)
b) \(\left(x-2y\right)\left(x+2y\right)\)
\(=x^2-\left(2y\right)^2\)
\(=x^2-4y^2\)
c) \(\left(-x-\dfrac{1}{2}y\right)\left(-x+\dfrac{1}{2}y\right)\)
\(=\left(-x\right)^2-\left(\dfrac{1}{2}y\right)^2\)
\(=x^2-\dfrac{1}{4}y^2\)
`a, (3x-5)(3x+5) = 9x^2 - 25`
`b, (x-2y)(x+2y) = x^2 -4y^2`
`c, (-x-1/2y)(-x+1/2y) = x^2 - 1/4y^2`
\(\left\{{}\begin{matrix}\dfrac{5\left(x-1\right)}{x+2y}+\dfrac{3\left(y+1\right)}{x-2y}=8\\\dfrac{20\left(x-1\right)}{x+2y}-\dfrac{7\left(y+1\right)}{x-2y}=-6\end{matrix}\right.\)
Giải chi tiết ôn thi vào 10
Lời giải:
Đặt $\frac{x-1}{x+2y}=a; \frac{y+1}{x-2y}=b$ thì HPT trở thành:
\(\left\{\begin{matrix}
5a+3b=8\\
20a-7b=-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
20a+12b=32\\
20a-7b=-6\end{matrix}\right.\)
\(\Rightarrow 19b=38\Rightarrow b=2\Rightarrow a=0,4\)
Ta có:
\(\left\{\begin{matrix} a=\frac{2}{5}\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x-1}{x+2y}=\frac{2}{5}\\ \frac{y+1}{x-2y}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x=4y+5\\ 2x=1+5y\end{matrix}\right.\)
\(\Rightarrow 2(4y+5)-3(1+5y)=0\Rightarrow y=1\)
Kéo theo $x=3$
Vậy $(x,y)=(3,1)$
\(\begin{cases}\left(5-2x\right)\sqrt{x+2y}=\left(6-x-2y\right)\sqrt{x-1}\\\left(x^3-2y-3\right)\left(x+\sqrt{4y^2-8x^2+24x+5}\right)=21\end{cases}\)
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
a)\(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
c) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
d) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)
=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)
=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)
=(5x)\(^3\)
=5\(^3\).x\(^3\)
=125.x\(^3\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
c: \(=x^2+6xy+9y^2\)
e: \(=x^4-4y^2\)