Giải chi tiết:
\(\dfrac{x}{1}=\dfrac{115-x}{2}=25\)
rút gọn biểu thức sau
A=\(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
giải chi tiết hộ mình với ạ !!!
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne25\right)\\ A=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ A=\dfrac{5+\sqrt{x}}{\sqrt{x}+5}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
Rút gọn biểu thức sau
C=\(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
giải chi tiết hộ mình vs ạ
\(C=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(đk:x\ge0,x\ne25\right)\)
\(=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
\(ĐK:x\ge0;x\ne25\)
\(C=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ C=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\)
DKXD: \(x\ne5;x>0\)
\(C=\left(\dfrac{15-\sqrt[]{x}}{x-25}+\dfrac{2}{\sqrt[]{x}+5}\right):\dfrac{\sqrt[]{x+1}}{\sqrt[]{x}-5}\)
\(C=\left(\dfrac{15-\sqrt[]{x}}{\left(\sqrt[]{x}—5\right)\left(\sqrt{x}+5\right)}+\dfrac{2\left(\sqrt[]{x}-5\right)}{\left(\sqrt[]{x}-5\right)\left(\sqrt{x+5}\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(C=\left(\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(C=\dfrac{5+\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(C=\dfrac{1}{\sqrt{x}+1}\)
\(\dfrac{-5}{17}\) x \(\dfrac{11}{25}\) + \(\dfrac{-5}{17}\) x \(\dfrac{26}{25}\) - \(\dfrac{-5}{17}\) x \(\dfrac{3}{25}\)
Các bạn giải chi tiết dùm mình nha, tks
\(\dfrac{3}{x-2}+\dfrac{x-1}{x+2}=\dfrac{9}{x^2-4}\)
giải chi tiết giúp e ạ
\(\Leftrightarrow3x+6+x^2-3x+2=9\)
\(\Leftrightarrow x^2+8=9\)
hay \(x\in\left\{1;-1\right\}\)
ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{3}{x-2}+\dfrac{x-1}{x+2}=\dfrac{9}{x^2-4}\\ \Leftrightarrow\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{9}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow\dfrac{3\left(x+2\right)+\left(x-1\right)\left(x-2\right)-9}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow3\left(x+2\right)+\left(x-1\right)\left(x-2\right)-9=0\\ \Leftrightarrow3x+6+x^2-x-2x+2-9=0\\ \Leftrightarrow x^2-1=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
\(\dfrac{9}{x^2-4}=\dfrac{x-1}{x+2}+\dfrac{3}{x-2}\) giải chi tiết giúp mk ạ
`9/[x^2-4]=[x-1]/[x+2]+3/[x-2]` `ĐK: x \ne +-2`
`<=>9/[(x-2)(x+2)]=[(x-1)(x-2)+3(x+2)]/[(x-2)(x+2)]`
`=>9=x^2-2x-x+2+3x+6`
`<=>x^2=1`
`<=>x=+-1` (t/m)
Vậy `x=+-1`
\(\dfrac{9}{x^2-4}=\dfrac{x-1}{x+2}+\dfrac{3}{x-2}\left(đkxđ:x\ne\pm2\right)\\ \Leftrightarrow\dfrac{9}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow9=x^2-3x+2+3x+6\\ \Leftrightarrow x^2=1\\ \Leftrightarrow x^2=\pm1\left(TM\right)\)
Vậy PT có tập nghiệm \(S=\left\{-1;1\right\}\)
\(\Leftrightarrow x^2-3x+2+3x+6=9\)
\(\Leftrightarrow x^2=1\)
=>x=1 hoặc x=-1
Giải pt sau
a)x\(^2\)-10x=-25
b)\(\dfrac{x+4}{2000}+\dfrac{x+8}{1996}\dfrac{ }{ }\)=\(\dfrac{x+12}{1992}+\dfrac{x+16}{1988}\)
GIẢI CHI TIẾT NHÉ
a) \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x=5\)
b) \(\dfrac{x+4}{2000}+\dfrac{x+8}{1996}=\dfrac{x+12}{1992}+\dfrac{x+16}{1988}\)
\(\Leftrightarrow\dfrac{x+4}{2000}+1+\dfrac{x+8}{1996}+1=\dfrac{x+12}{1992}+1+\dfrac{x+16}{1988}+1\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{1996}-\dfrac{x+2004}{1992}-\dfrac{x+2004}{1988}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì \(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\ne0\))
\(\Leftrightarrow x=-2004\)
Tìm x
\(\dfrac{1}{2.4}\) + \(\dfrac{1}{4.6}\) +...+ \(\dfrac{1}{\left(2x-2\right).2x}\) = \(\dfrac{1}{8}\) ( x ∈ N , x ≥ 2 )
có lời giải chi tiết
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
\(\Leftrightarrow\dfrac{1}{4}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{\left(x-1\right)x}\right)=\dfrac{1}{8}\) ( đk x khác 0 , x khác 1)
\(\Leftrightarrow\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{x-1}-\dfrac{1}{x}\right)=\dfrac{1}{8}\)
\(\Leftrightarrow1-\dfrac{1}{x}=\dfrac{1}{2}\)
=> x =2 ( tm)
giải chi tiết
\(\dfrac{-2}{3}\) ( \(\dfrac{3}{2}\) - x ) = \(\dfrac{3}{4}\) ( \(\dfrac{1}{6}\) - \(\dfrac{2}{9}\) )
\(-\dfrac{2}{3}\left(\dfrac{3}{2}-x\right)=\dfrac{3}{4}\left(\dfrac{1}{6}-\dfrac{2}{9}\right)\)
\(< =>-1+\dfrac{2x}{3}=\dfrac{3}{4}\left(\dfrac{3-4}{18}\right)< =>-1+\dfrac{2x}{3}=\dfrac{3}{4}.\dfrac{-1}{18}\)
\(< =>-1+\dfrac{2x}{3}=-\dfrac{1}{24}=>\dfrac{2x}{3}=-\dfrac{1}{24}+1\)
\(< =>\dfrac{2x}{3}=\dfrac{23}{24}=>48x=69=>x=\dfrac{69}{48}=\dfrac{23}{16}\)
Rút gọn biểu thức sau
B=\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\)\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
giải chi tiết hộ mình ak
\(ĐK:x>0;x\ne4\\ B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{x+2\sqrt{x}+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ B=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+3\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}}{x-4}\)
1) GIẢI phương trình :
a) 2x-6=0
b) x2-4x=0
c)\(\dfrac{x+2}{x-3}\)-\(\dfrac{3}{x}\)=\(\dfrac{x+9}{x^2-3x}\)
d) \(\dfrac{x-1}{2}\)-\(\dfrac{x-2}{3}\)=x-\(\dfrac{x-3}{4}\)
giải chi tiết giúp mik ah
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)