Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 11 2021 lúc 17:01

\(ĐK:x^2-xy+y^2\ne0\)

Ahihi
Xem chi tiết

\(Đặt:z=\dfrac{1}{\sqrt{y}-3}\left(y\ge0;y\ne9\right)\\ \left\{{}\begin{matrix}x+2+\dfrac{2}{\sqrt{y}-3}=9\\2x+4-\dfrac{1}{\sqrt{y-3}}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2z=9-2=7\\2x-z=8-4=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4z=14\\2x-z=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5z=10\\2x-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{y}-3}=2\\x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y}-6=1\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}=\dfrac{7}{2}\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\left(\dfrac{7}{2}\right)^2=\dfrac{49}{4}\\x=3\end{matrix}\right.\)

 

Anh giải hệ lun hi, chứ ĐKXĐ là: \(\left(y\ge0;y\ne9\right)\)

Phùng Công Anh
27 tháng 5 2023 lúc 11:51

\(ĐKXĐ: \begin{cases} \sqrt{y}-3 \ne 0\\\sqrt{y}\ge0\end{cases} \Leftrightarrow \begin{cases} y\ne9\\y\ge0 \end{cases}\)

VannAnhhvute
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2020 lúc 21:44

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 23:00

Bài 2: 

Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)

nguyễn tất hùng
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 18:26

ĐKXĐ:

\(x^2-x+1>0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (luôn đúng)

Vậy hàm số xác định với mọi x thuộc R

Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 19:44

ĐKXĐ: \(x\in R\)

Ha Pham
Xem chi tiết
Du Xin Lỗi
23 tháng 12 2022 lúc 18:20

\(Q=\left(\dfrac{x+1}{\left(x-1\right)^2}+\dfrac{1}{x-1}\right).\dfrac{x-1}{x}-\dfrac{2}{x-1}=\left(\dfrac{2}{x-1}\right)-\left(\dfrac{2}{x-1}\right)=0\)

Hezlin
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 20:04

a: ĐKXĐ: x<>0; x<>1

\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |2x+1|=3

=>x=1(loại); x=-2(nhận)

Khi x=-2 thì P=4/-3=-4/3

c: P=-1/2

=>x^2/x-1=-1/2

=>2x^2=-x+1

=>2x^2+x-1=0

=>2x^2+2x-x-1=0

=>(x+1)(2x-1)=0

=>x=1/2; x=-1

 

Nguyễn Thùy Chi
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 21:16

Điều kiện: x>2

P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)

P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) P= \(\dfrac{1}{4}\)

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)

\(4\sqrt{x}-8=3\sqrt{x}\)

\(\sqrt{x}=8\)

⇔x=64 (TM) 

Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)

 

 

Ngô Thành Chung
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 5 2021 lúc 11:28

\(2sin\left(x+y\right)=sinx+siny\)

\(\Leftrightarrow2.2.sin\dfrac{x+y}{2}.cos\dfrac{x+y}{2}=2.sin\dfrac{x+y}{2}.cos\dfrac{x-y}{2}\)

\(\Leftrightarrow2cos\dfrac{x+y}{2}=cos\dfrac{x-y}{2}\)

\(\Leftrightarrow2\left(cos\dfrac{x}{2}.cos\dfrac{y}{2}-sin\dfrac{x}{2}.sin\dfrac{y}{2}\right)=cos\dfrac{x}{2}.cos\dfrac{y}{2}+sin\dfrac{x}{2}.sin\dfrac{y}{2}\)

\(\Leftrightarrow cos\dfrac{x}{2}.cos\dfrac{y}{2}=3.sin\dfrac{x}{2}.sin\dfrac{y}{2}\)

\(\Leftrightarrow\left(sin\dfrac{x}{2}:cos\dfrac{x}{2}\right).\left(sin\dfrac{y}{2}:cos\dfrac{y}{2}\right)=\dfrac{1}{3}\)

\(\Leftrightarrow tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\)

 

2sin(x+y)=sinx+siny2sin(x+y)=sinx+siny

⇔2cosx+y2=cosx−y2⇔2cosx+y2=cosx−y2

⇔cosx2.cosy2=3.sinx2.siny2⇔cosx2.cosy2=3.sinx2.siny2

⇔tanx2.tany2=13⇔tanx2.tany2=13