Tìm ĐKXĐ
\(\dfrac{1}{x^2+y^2};\dfrac{x^2y+2x}{x^2-2x+1};\dfrac{5x+y}{x^2+6x+10};\dfrac{x+y}{\left(x+3\right)^2+\left(y-2\right)^2}\)
tìm ĐKXĐ của phân thức A = \(\dfrac{1}{x^2-xy+y^2}\)
\(\left\{{}\begin{matrix}x+2+\dfrac{2}{\sqrt{y}-3}=9\\2x+4-\dfrac{1}{\sqrt{y}-3}=8\end{matrix}\right.\)
Tìm ĐKXĐ của hệ phương trình
\(Đặt:z=\dfrac{1}{\sqrt{y}-3}\left(y\ge0;y\ne9\right)\\ \left\{{}\begin{matrix}x+2+\dfrac{2}{\sqrt{y}-3}=9\\2x+4-\dfrac{1}{\sqrt{y-3}}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2z=9-2=7\\2x-z=8-4=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4z=14\\2x-z=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5z=10\\2x-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{y}-3}=2\\x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y}-6=1\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}=\dfrac{7}{2}\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\left(\dfrac{7}{2}\right)^2=\dfrac{49}{4}\\x=3\end{matrix}\right.\)
Anh giải hệ lun hi, chứ ĐKXĐ là: \(\left(y\ge0;y\ne9\right)\)
\(ĐKXĐ: \begin{cases} \sqrt{y}-3 \ne 0\\\sqrt{y}\ge0\end{cases} \Leftrightarrow \begin{cases} y\ne9\\y\ge0 \end{cases}\)
M=\(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{x-4}\)tìm ĐKXĐ
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
giải các hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\)
b2.
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B3. Tìm ĐKXĐ
\(\dfrac{1}{x\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}\)
b4. so sánh A với 1
A=\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b5.tính
a,\(\sin47+2\sin38-\cos43-\cos52\)
b, \(C=\dfrac{2\sin^2x-1}{\sin x-\cos x}\)
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
\(\dfrac{2}{\sqrt[]{x^2-x+1}}\) tìm ĐKXĐ
ĐKXĐ:
\(x^2-x+1>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (luôn đúng)
Vậy hàm số xác định với mọi x thuộc R
Cho biểu thức:
Q=(\(\dfrac{x+1}{x^2-2x+1}+\dfrac{1}{x-1}\)):\(\dfrac{x}{x-1}-\dfrac{2}{x-1}\)
a) Tìm ĐKXĐ của Q
b) Rút gọn Q
\(Q=\left(\dfrac{x+1}{\left(x-1\right)^2}+\dfrac{1}{x-1}\right).\dfrac{x-1}{x}-\dfrac{2}{x-1}=\left(\dfrac{2}{x-1}\right)-\left(\dfrac{2}{x-1}\right)=0\)
cho bt: P=\(\dfrac{x^2+x}{x^2-2x+1}\):(\(\dfrac{x+1}{x}\)-\(\dfrac{1}{1-x}\)+\(\dfrac{2-x^2}{x^2-x}\))
a,tìm đkxđ rồi rút gọn
b,tính P biết |1+2x|=3
c,tìm x để P=\(\dfrac{-1}{2}\)
d,tìm x để P<1
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |2x+1|=3
=>x=1(loại); x=-2(nhận)
Khi x=-2 thì P=4/-3=-4/3
c: P=-1/2
=>x^2/x-1=-1/2
=>2x^2=-x+1
=>2x^2+x-1=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=1/2; x=-1
Cho P = (\(\dfrac{1}{\sqrt{x}-1 }\) - \(\dfrac{1}{\sqrt{x}}\))(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P = \(\dfrac{1}{4}\)
Điều kiện: x>2
P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)
P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) P= \(\dfrac{1}{4}\)
⇔\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)
⇔\(4\sqrt{x}-8=3\sqrt{x}\)
⇔\(\sqrt{x}=8\)
⇔x=64 (TM)
Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)
Cho 2sin(x + y) = sinx + siny
CMR : \(tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\) với x,y thích hợp với đkxđ của đề bài
\(2sin\left(x+y\right)=sinx+siny\)
\(\Leftrightarrow2.2.sin\dfrac{x+y}{2}.cos\dfrac{x+y}{2}=2.sin\dfrac{x+y}{2}.cos\dfrac{x-y}{2}\)
\(\Leftrightarrow2cos\dfrac{x+y}{2}=cos\dfrac{x-y}{2}\)
\(\Leftrightarrow2\left(cos\dfrac{x}{2}.cos\dfrac{y}{2}-sin\dfrac{x}{2}.sin\dfrac{y}{2}\right)=cos\dfrac{x}{2}.cos\dfrac{y}{2}+sin\dfrac{x}{2}.sin\dfrac{y}{2}\)
\(\Leftrightarrow cos\dfrac{x}{2}.cos\dfrac{y}{2}=3.sin\dfrac{x}{2}.sin\dfrac{y}{2}\)
\(\Leftrightarrow\left(sin\dfrac{x}{2}:cos\dfrac{x}{2}\right).\left(sin\dfrac{y}{2}:cos\dfrac{y}{2}\right)=\dfrac{1}{3}\)
\(\Leftrightarrow tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\)
2sin(x+y)=sinx+siny2sin(x+y)=sinx+siny
⇔2cosx+y2=cosx−y2⇔2cosx+y2=cosx−y2
⇔cosx2.cosy2=3.sinx2.siny2⇔cosx2.cosy2=3.sinx2.siny2
⇔tanx2.tany2=13⇔tanx2.tany2=13