d) 3.\(\left(\left|x\right|-\dfrac{4}{5}\right)+0,2=0,5\)
Tính:
\(\left\{\left[\left(6,2:0,31-\dfrac{5}{6}.0,9\right).0,2+0,15\right]:0,2\right\}:\left[\left(2+1\dfrac{4}{11}.0,22:0,1\right).\dfrac{1}{33}\right]\)
b) \(0,4\left(3\right)+0,6\left(2\right).2\dfrac{1}{2}.\left[\left(\dfrac{1}{2}+\dfrac{1}{3}\right):0,5\left(8\right)\right]:\dfrac{50}{53}\)
a: \(=\left\{\left[\left(20-\dfrac{1}{4}\right)\cdot0.2\right]+\dfrac{3}{20}\right\}\cdot5:\left[\left(2+\dfrac{25}{11}\cdot\dfrac{22}{100}\cdot10\right)\cdot\dfrac{1}{33}\right]\)
\(=\left\{\left[\dfrac{79}{20}+\dfrac{3}{20}\right]\right\}\cdot5:\left[\dfrac{356}{55}\cdot\dfrac{1}{33}\right]\)
\(=\dfrac{82}{20}\cdot5:\dfrac{3856}{1815}\simeq104,516\)
b: \(=\dfrac{13}{30}+\dfrac{28}{45}\cdot\dfrac{5}{2}\cdot\left[\dfrac{5}{6}:\dfrac{53}{90}\right]\cdot\dfrac{53}{50}\)
\(=\dfrac{13}{30}+\dfrac{14}{9}\cdot\dfrac{3}{2}=\dfrac{83}{30}\)
hãy so sánh mỗi số sau
a) \(\left(0,2\right)^{-3}\) và \(\left(0,2\right)^{-2}\)
b) \(\left(\dfrac{1}{3}\right)^{2000}\) và \(\left(\dfrac{1}{3}\right)^{2004}\)
c) \(\left(3,2\right)^{1,5}\) và \(\left(3,2\right)^{1,6}\)
d) \(\left(0,5\right)^{-2021}\) và \(\left(0,5\right)^{-2023}\)
a: Vì 0,2<1
nên hàm số \(y=\left(0,2\right)^x\) nghịch biến trên R
mà -3<-2
nên \(\left(0,2\right)^{-3}>\left(0,2\right)^{-2}\)
b: Vì \(0< \dfrac{1}{3}< 1\)
nên hàm số \(y=\left(\dfrac{1}{3}\right)^x\) nghịch biến trên R
mà \(2000< 2004\)
nên \(\left(\dfrac{1}{3}\right)^{2000}>\left(\dfrac{1}{3}\right)^{2004}\)
c: Vì 3,2>1
nên hàm số \(y=\left(3,2\right)^x\) đồng biến trên R
mà \(1,5< 1,6\)
nên \(\left(3,2\right)^{1,5}< \left(3,2\right)^{1,6}\)
d: Vì \(0< 0,5< 1\)
nên hàm số \(y=\left(0,5\right)^x\) nghịch biến trên R
mà -2021>-2023
nên \(\left(0,5\right)^{-2021}< \left(0,5\right)^{-2023}\)
thực hiện phép tính
a)\(\left(\dfrac{9}{25}-2,18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b)\(\dfrac{3}{8}.19\dfrac{1}{3}-\dfrac{3}{8}.33\dfrac{1}{3}\)
c)\(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
d)\(\dfrac{2^{12}.3^5-4^6.81}{2^2.3^6+8^4.3^5}\)
e)\(4\left(-\dfrac{1}{2}\right)^2-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)
g)\(\sqrt{\dfrac{4}{81}}:\sqrt{\dfrac{25}{81}}-1\dfrac{2}{5}\)
Tìm x,y biết :
a ) \(1-\left|x-\dfrac{1}{4}\right|=0,25\)
b)\(\left|x+0,5\right|+2,25=0,5\)
c)\(\left|2x+5\right|=\left|1-x\right|\)
d)\(\left|x-2\right|-0,5=\dfrac{1}{4}\)
e)\(\left|\dfrac{3}{2}-x\right|+2=2\)
f)\(\left|x-3\right|+5=4\)
g)\(\left|\dfrac{1}{2}x-3\right|+\left|y+0,5\right|=0\)
h)\(\left|x+4\right|+\left|1-2y\right|=0\)
giup mình voi mình sap đi học rồi
a: =>|x-1/4|=3/4
=>x-1/4=3/4 hoặc x-1/4=-3/4
=>x=1 hoặc x=-1/2
b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)
e: =>|3/2-x|=0
=>3/2-x=0
hay x=3/2
a.,\(\dfrac{4}{5}+5\dfrac{1}{2}\text{x }\left(4,5-2\right)=\dfrac{7}{10}\) b,125%x\(\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
c,\(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\) d, \(\dfrac{3}{17}+\dfrac{11}{4}+\dfrac{5}{8}+\dfrac{14}{17}+\dfrac{3}{8}\)
`a)4/5+5 1/2 xx (4,5-2)+7/10`
`=4/5+11/2*2,5+7/10`
`=0,8+2,2+0,7`
`=3+0,7=3,7`
`b)125%xx 17/4:(1 5/16-0,5)+2008`
`=1,25xx4,25:13/16+2008`
`=85/13+2008`
`=2014 7/13`
`c)5/11+(16/11+1)`
`=5/11+1+5/11+1`
`=2+10/11=32/11`
`d)3/17+11/4+5/8+14/17+3/8`
`=3/17+14/17+5/8+3/8+11/4`
`=1+1+11/4`
`=19/4`
a)
\(\dfrac{4}{5}+5\dfrac{1}{2}x\left(4,5-2\right)=\dfrac{7}{10}\)
<=> \(\dfrac{11}{2}x\times2,5=\dfrac{7}{10}-\dfrac{4}{5}=\dfrac{-1}{10}\)
<=> \(\dfrac{55}{4}x=\dfrac{-1}{10}< =>x=\dfrac{-2}{275}\)
b) \(125\%\times\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
= \(\dfrac{85}{16}:\left(\dfrac{21}{16}-\dfrac{1}{2}\right)+2008=\dfrac{85}{16}:\dfrac{13}{16}+2008=\dfrac{26189}{13}\)
c) \(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\)
= \(\dfrac{21}{11}+1=\dfrac{32}{11}\)
d) \(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)+\dfrac{11}{4}\)
= 1 + 1 + \(\dfrac{11}{4}\) = \(\dfrac{19}{4}\)
b. \(\dfrac{8^2.6^3}{9^2.16^2}\)
c. \(\dfrac{\left(0,15\right)^4}{\left(0,5\right)^5}\)
d. \(\left(\dfrac{3}{4}\right)^3\). \(\left(\dfrac{16}{9}\right)^3\)
\(\dfrac{8^2.6^3}{9^2.16^2}=\dfrac{\left(2^3\right)^2.2^3.3^3}{\left(3^2\right)^2.\left(2^4\right)^2}=\dfrac{2^{3.2+3}.3^3}{3^4.2^8}=\dfrac{3^3.2^8.2}{3.3^3.2^8}=\dfrac{2}{3}\\ ---\\ \dfrac{\left(0,15\right)^4}{\left(0,5\right)^5}=\left(\dfrac{0,15}{0,5}\right)^4.\dfrac{1}{0,5}=\left(\dfrac{3}{10}\right)^4.2=\dfrac{81}{10000}.2=\dfrac{81}{5000}\\ ---\\ d,\left(\dfrac{3}{4}\right)^3.\left(\dfrac{16}{9}\right)^3=\left(\dfrac{3}{4}.\dfrac{16}{9}\right)^3=\left(\dfrac{48}{32}\right)^3=\left(\dfrac{3}{2}\right)^3=\dfrac{27}{8}\)
b) \(\dfrac{8^2.6^3}{9^2.16^2}=\dfrac{2^6.2^3.3^3}{3^4.2^8}=\dfrac{2^9.3^3}{3^4.2^8}=\dfrac{2}{3}\)
c) \(\dfrac{\left(0,15\right)^4}{\left(0,5\right)^5}=\dfrac{\left(0,5\right)^4.\left(0,3\right)^4}{\left(0,5\right)^5}=\dfrac{0,3^4}{0,5}\)
d) \(\left(\dfrac{3}{4}\right)^3.\left(\dfrac{16}{9}\right)^3=\dfrac{3^3}{4^3}.\dfrac{4^6}{3^6}=\dfrac{4^3}{3^3}=\left(\dfrac{4}{3}\right)^3\)
b. \(\dfrac{2}{3}\)
c. \(\dfrac{81}{5000}\)
d. \(\dfrac{64}{27}\)
Tìm x biết
a)\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\)
b)\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\)
c)\(\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)
d)\(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
e)\(2\left(x+1\right)-\dfrac{1}{3}.\left(x-1\right)=\dfrac{2}{3}\)
k)\(\left|4x-0,2\right|=0,2\)
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
| 4x - 0,2 | = 0,2
=> 4x - 0,2 = \(\dfrac{-1}{5}\)
4x = \(\dfrac{-1}{5}\) + 0,2 = 0
x = \(\dfrac{0}{4}\)
=> Ko có giá trị x
=> 4x - 0,2 = \(\dfrac{1}{5}\)
4x = \(\dfrac{1}{5}\)+ 0,2 = \(\dfrac{2}{5}\)
x = \(\dfrac{2}{5}\): 4 = \(\dfrac{2}{5}\). 4 = \(\dfrac{8}{5}\)
Vậy x = \(\dfrac{8}{5}\)
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
a)\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}\)
b)\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)x\left(\dfrac{4}{5}-\dfrac{3}{4}\right)\)
c)\(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^2\)
d)\(\dfrac{6^3+3x6^2+3^3}{-13}\)
a) \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2.3\right)^5}{\left(0,2\right)^5.\left(0,2\right)}=\dfrac{\left(0,2\right)^5.3^5}{\left(0,2\right)^5.\left(0,2\right)}=\dfrac{3^5}{0,2}=\dfrac{243}{0,2}=1215\)
c) \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^2=2:\left(\dfrac{3}{6}-\dfrac{4}{6}\right)^2=2:\left(-\dfrac{1}{6}\right)^2=2:\dfrac{1}{36}=72\)