Biết \(limu_n=+\infty\). Tính \(lim\dfrac{u_n+1}{3u_n^2+5}\)
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Biết \(\lim\limits u_n=3;\lim\limits v_n=+\infty\). Tính các giới hạn :
a) \(\lim\limits\dfrac{3u_n-1}{u_n+1}\)
b) \(\lim\limits\dfrac{v_n+2}{v^2_n-1}\)
tìm \(limu_n=L>0\) thì \(lim\sqrt{\dfrac{n\left(u_n+9\right)}{n+5}}\)=?
Lời giải:\(\lim\limits\sqrt{\frac{n(u_n+9)}{n+5}}=\lim\limits\sqrt{\frac{u_n+9}{1+\frac{5}{n}}}=\lim\limits\sqrt{u_n+9}=\sqrt{L+9}\)
Tìm \(lim\dfrac{u_n}{3^n}\) biết: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=3u_n+2n-1\end{matrix}\right.\)
\(u_n:\left\{{}\begin{matrix}u_1=1\\u_{n+1}=3u_n+2n-1\left(1\right)\end{matrix}\right.\)
Đặt \(limu_n=a\Rightarrow limu_{n+1}=a\)
\(\left(1\right)\Rightarrow a=3a+2n-1\)
\(\Rightarrow a=\dfrac{1-2n}{2}\)
\(\Rightarrow limu_n=\dfrac{1-2n}{2}\)
\(\Rightarrow lim\dfrac{u_n}{3^n}=lim\dfrac{1-2n}{2.3^n}=0\)
Đặt \(v_n=u_n+n\)
Chứng minh được \(3^n>n^2\) với mọi số nguyên dương n bằng phương pháp quy nạp. Suy ra: \(\left|\dfrac{n}{3^n}\right|< \left|\dfrac{n}{n^2}\right|=\dfrac{1}{n}\). Mà \(lim\dfrac{1}{n}=0\rightarrow lim\dfrac{n}{3^n}=0\)
\(u_{n+1}=3u_n+2n-1\rightarrow v_{n+1}=3v_n\\ \rightarrow v_n=v_1.3^{n-1}=2.3^{n-1}\\ \rightarrow u_n=2.3^{n-1}-n\\ lim\dfrac{u_n}{3^n}=lim\dfrac{2.3^{n-1}-n}{3^n}=lim\left(\dfrac{2}{3}-\dfrac{n}{3^n}\right)=\dfrac{2}{3}\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=u_n^2-3u_n+4\end{matrix}\right.\)
Tìm lim\(\left(\dfrac{1}{u_1-1}+\dfrac{1}{u_2-1}+...+\dfrac{1}{u_n-1}\right)\)
Bạn tham khảo câu trả lời của anh Lâm
https://hoc24.vn/cau-hoi/.334447965337
Tìm \(lim\) \(u_n\), biết \(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\).
A. \(lim\) \(u_n=\dfrac{3}{4}\).
B. \(lim\) \(u_n=\dfrac{3}{5}\).
C. \(lim\) \(u_n=\dfrac{2}{3}\).
D. \(lim\) \(u_n=\dfrac{4}{3}\).
Giải thích chi tiết bước làm và tại sao lại làm như vậy.
\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)
\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)
\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)
\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)
\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)
=3/4
=>Chọn A
Cho dãy \(u_n\) thỏa\(\left\{{}\begin{matrix}u_1=a,u_2=b\\u_{n+2}=\dfrac{u_{n+1}+u_n}{2}\end{matrix}\right.\). TÍnh \(limu_n\)
\(\left\{{}\begin{matrix}u_1=a;u_2=b\\u_{n+2}=\dfrac{1}{2}u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1=a,u_2=b\\u_{n+2}+\dfrac{1}{2}u_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)
\(v_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\Rightarrow\left\{{}\begin{matrix}v_2=u_2+\dfrac{1}{2}u_1=b+\dfrac{1}{2}a\\v_{n+1}=v_n\end{matrix}\right.\)
\(\Rightarrow v_{n+1}=b+\dfrac{1}{2}a\Rightarrow u_{n+1}=b+\dfrac{1}{2}a-\dfrac{1}{2}u_n\)
\(\Leftrightarrow u_{n+1}-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)=-\dfrac{1}{2}\left[u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\right]\)
\(t_n=u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\Rightarrow\left\{{}\begin{matrix}t_1=u_1-\dfrac{1}{3}a-\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\\t_{n+1}=-\dfrac{1}{2}t_n\end{matrix}\right.\)
\(\Rightarrow t_n=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}\Rightarrow u_n=t_n+\dfrac{1}{3}a+\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\)
\(\Rightarrow limun=\lim\limits\left[\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\right]=0\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{x^2+x+1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x+1}{3x^2-x+5}\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x+5}{\sqrt{x^2+x}}\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{-5x+1}{\sqrt{3x^2+1}}\)
`a)lim_{x->+oo}[x+1]/[x^2+x+1]`
`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`
`=0`
`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`
`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`
`=0`
`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`
`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`
`=-3`
`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`
`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`
`=-5/3`
Cho dãy (un) \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_n=\dfrac{\sqrt{u_{n-1}^2+4u_{n-1}}+u_{n-1}}{2}\forall n\ge2\end{matrix}\right.\)
Tinh \(\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{u_1^2}+\dfrac{1}{u_2^2}+...+\dfrac{1}{u_n^2}\right)\)
Cho dãy số \(\left(u_n\right)\) : \(\left\{{}\begin{matrix}u_1=\frac{5}{2}\\u_{n+1}=\frac{1}{2}u_n^2-u_n+2\end{matrix}\right.\) với n=1,2,3... Chứng minh rằng \(\lim\limits_{n\rightarrow+\infty}u_n=+\infty\) và tìm \(\lim\limits_{n\rightarrow+\infty}\left(\frac{1}{u_1}+\frac{1}{u_2}+...+\frac{1}{u_n}\right)\) ?
1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)
+) CM \(u_n>2\) (n thuộc N*)
n=1 : u1= 5/2 > 2 (đúng)
Giả sử n=k, uk > 2 (k thuộc N*)
Ta cần CM n = k + 1. Thật vậy ta có:
\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)
Vậy un > 2 (n thuộc N*) (2)
Từ (1) (2) => un+1 - un > 0, hay un+1 > un
=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)
2) \(2u_{n+1}=u^2_n-2u_n+4\)
\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)
\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)
\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)
\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)
\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)
\(=2-\dfrac{1}{u_{n+1}-2}\)
\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)