Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:21

a) lim = = 2;

b) lim = = 0.

Julian Edward
Xem chi tiết
Akai Haruma
4 tháng 2 2021 lúc 0:54

Lời giải:\(\lim\limits\sqrt{\frac{n(u_n+9)}{n+5}}=\lim\limits\sqrt{\frac{u_n+9}{1+\frac{5}{n}}}=\lim\limits\sqrt{u_n+9}=\sqrt{L+9}\)

Big City Boy
Xem chi tiết
Nguyễn Đức Trí
10 tháng 9 2023 lúc 14:03

\(u_n:\left\{{}\begin{matrix}u_1=1\\u_{n+1}=3u_n+2n-1\left(1\right)\end{matrix}\right.\)

Đặt \(limu_n=a\Rightarrow limu_{n+1}=a\)

\(\left(1\right)\Rightarrow a=3a+2n-1\)

\(\Rightarrow a=\dfrac{1-2n}{2}\)

\(\Rightarrow limu_n=\dfrac{1-2n}{2}\)

\(\Rightarrow lim\dfrac{u_n}{3^n}=lim\dfrac{1-2n}{2.3^n}=0\)

Rin Huỳnh
3 tháng 12 2023 lúc 23:31

Đặt \(v_n=u_n+n\)

Chứng minh được \(3^n>n^2\) với mọi số nguyên dương n bằng phương pháp quy nạp. Suy ra: \(\left|\dfrac{n}{3^n}\right|< \left|\dfrac{n}{n^2}\right|=\dfrac{1}{n}\). Mà \(lim\dfrac{1}{n}=0\rightarrow lim\dfrac{n}{3^n}=0\)

\(u_{n+1}=3u_n+2n-1\rightarrow v_{n+1}=3v_n\\ \rightarrow v_n=v_1.3^{n-1}=2.3^{n-1}\\ \rightarrow u_n=2.3^{n-1}-n\\ lim\dfrac{u_n}{3^n}=lim\dfrac{2.3^{n-1}-n}{3^n}=lim\left(\dfrac{2}{3}-\dfrac{n}{3^n}\right)=\dfrac{2}{3}\)

Nguyễn Thùy Chi
Xem chi tiết
Hoàng Tử Hà
19 tháng 2 2021 lúc 11:38

Bạn tham khảo câu trả lời của anh Lâm

https://hoc24.vn/cau-hoi/.334447965337

Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 22:30

\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)

\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)

\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)

\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)

\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)

=3/4

=>Chọn A

Lê Nguyên Hưng
Xem chi tiết
Hoàng Tử Hà
5 tháng 3 2021 lúc 22:35

\(\left\{{}\begin{matrix}u_1=a;u_2=b\\u_{n+2}=\dfrac{1}{2}u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=a,u_2=b\\u_{n+2}+\dfrac{1}{2}u_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\end{matrix}\right.\)

\(v_{n+1}=u_{n+1}+\dfrac{1}{2}u_n\Rightarrow\left\{{}\begin{matrix}v_2=u_2+\dfrac{1}{2}u_1=b+\dfrac{1}{2}a\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=b+\dfrac{1}{2}a\Rightarrow u_{n+1}=b+\dfrac{1}{2}a-\dfrac{1}{2}u_n\)

\(\Leftrightarrow u_{n+1}-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)=-\dfrac{1}{2}\left[u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\right]\)

\(t_n=u_n-\left(\dfrac{1}{3}a+\dfrac{2}{3}b\right)\Rightarrow\left\{{}\begin{matrix}t_1=u_1-\dfrac{1}{3}a-\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\\t_{n+1}=-\dfrac{1}{2}t_n\end{matrix}\right.\)

\(\Rightarrow t_n=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}\Rightarrow u_n=t_n+\dfrac{1}{3}a+\dfrac{2}{3}b=\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\)

\(\Rightarrow limun=\lim\limits\left[\dfrac{2}{3}\left(a-b\right)\left(-\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3}a+\dfrac{2}{3}b\right]=0\)

 

 

títtt
Xem chi tiết
2611
18 tháng 11 2023 lúc 21:03

`a)lim_{x->+oo}[x+1]/[x^2+x+1]`

`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`

`=0`

`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`

`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`

`=0`

`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`

`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`

`=-3`

`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`

`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`

`=-5/3`

Kimian Hajan Ruventaren
Xem chi tiết
An Khanh Nguyên
Xem chi tiết
Nguyễn Bá Hùng
8 tháng 8 2022 lúc 17:43

1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)

+) CM \(u_n>2\) (n thuộc N*)

n=1 : u1= 5/2 > 2 (đúng)

Giả sử n=k, uk > 2 (k thuộc N*)

Ta cần CM n = k + 1. Thật vậy ta có:

\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)

Vậy un > 2 (n thuộc N*)        (2)

Từ (1) (2) => un+1 - u> 0, hay un+1 > un

=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)

 

2) \(2u_{n+1}=u^2_n-2u_n+4\)

\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)

\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)

\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)

\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)

\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)

\(=2-\dfrac{1}{u_{n+1}-2}\)

\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)