Giúp ạ lim x->+ vô cùng (x-1)^2 / x(x^2 + 5)
1) lim \(\frac{-x^2+3x}{x^3-2x^2+x}\) (x->1)
2) lim \(\frac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\) (x->0)
3) lim \(\frac{x\sqrt[3]{x^3+1
}}{2-x\sqrt{1+4x^2}}\) (x-> âm vô cùng )
4) lim \(\frac{\cos^9x-1}{x}\) (x->0)
giúp mình với ạ
tìm lim (2x^2 -xsinx+1)/(x^2 -xcosx +2) (x tiến đến dương vô cùng)
lim (cos10x+xsin10x)/(x căn x +2) (x tiến đến âm vô cùng)
Tính Lim x--> âm vô cùng (√4x2+x +2x-1) Cái dấu căn bậc 2 tới x là dừng ạ(em có cách ra rồi ạ) còn lại là 2x-1. Cách làm là nhân liên hợp gì đó ạ
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
Lim x tới âm vô cùng √4x^2+x +2x-1
Bạn nên gõ lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn bạn nhé.
\(\lim\limits_{x\rightarrow-\infty}\sqrt{4x^2+x}+2x-1\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{-x\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
Tính giới hạn của lim tiến tới âm vô cùng (-x^3+x^2-x+1)
1/ \(\lim\limits_{x\to 1}\) \(\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}\)
2/ \(\lim\limits_{x \to \ +\infty} \)\(x\left[\sqrt{4x^2+5}-\sqrt[3]{8x^3-1}\right]\)
3/ \(\lim\limits_{x\to 1}\)\(\dfrac{x^3-2x-1}{x^5-2x-1}\)
Giải giúp mình với ạ
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).
nếu lim f(x)=L>0, lim g(x)=-vô cùng thì kết quả của giới hạn lim f(x).g(x) là:
A/ - vô cùng
B/ 0
C/ + vô cùng
D/ L
lim x tiến tới vô cùng (\(\sqrt{x^2+x}\)-\(\sqrt[3]{x^3-x^2}\))
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-x+x-\sqrt[3]{x^3-x^2}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x}{\sqrt{x^2+x}+x}+\dfrac{x^2}{x^2+x.\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{x}}+1}+\dfrac{1}{1+\sqrt[3]{1-\dfrac{1}{x}}+\sqrt[3]{\left(1-\dfrac{1}{x}\right)^2}}\right)\)
\(=\dfrac{1}{\sqrt{1+0}+1}+\dfrac{1}{1+\sqrt[3]{1-0}+\sqrt[3]{\left(1-0\right)^2}}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
a) lim \(\dfrac{2x^3-5x-4}{\left(x+1\right)^2}\) khi x tiến đến -1.
b) lim (x3 + 2x2\(\sqrt{x}\) - 1) khi x tiến đến dương vô cùng.
Giúp mình với ạ.
a/ \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}=\dfrac{2.\left(-1\right)^3-5\left(-1\right)-4}{\left(-1+1\right)^2}=-\dfrac{1}{0}=-\infty\)
b/ \(\lim\limits\left(x^3+2\sqrt{x^5}-1\right)=\lim\limits x^3\left(1+0-0\right)=+\infty\)