Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Hân
Xem chi tiết
Võ Ngọc Phương
20 tháng 9 2023 lúc 20:21

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)

\(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+\dfrac{1}{9\times11}\right)\)

\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)

\(=1-\dfrac{1}{11}\)

\(=\dfrac{11}{11}-\dfrac{1}{11}\)

\(=\dfrac{10}{11}\)

Hà Quang Minh
20 tháng 9 2023 lúc 20:26

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}\\ =\dfrac{10}{11}\)

Nguyễn Đăng Nhân
20 tháng 9 2023 lúc 20:19

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{9\cdot11}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{2}{11}\)

\(=1-\dfrac{2}{11}\)

\(=\dfrac{9}{11}\)

Đinh Chấn Thiên
Xem chi tiết
Xuân Tuấn Trịnh
27 tháng 4 2017 lúc 0:48

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

b)ĐK: \(n\ne-5\)

\(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)

Để A nguyên thì \(\dfrac{n-2}{n+5}\)phải nguyên <=> \(\dfrac{7}{n+5}\) nguyên mà n là số nguyên <=> 7 chia hết cho n+5 hay n+5 là Ư(7)

Mà Ư(7)={-1;1;-7;7}

Ta có bảng sau:

n+5 -1 1 -7 7
n -6(TM) -4(TM) -12(TM) 2(TM)

Vậy n={-6;-4;-12;2} thì A nguyên

Sáng
27 tháng 4 2017 lúc 5:41

a. \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

b, Ta có: \(A=\dfrac{n-2}{n+5}=\dfrac{n+5-7}{n+5}=1-\dfrac{7}{n+5}\)

Để \(A\in Z\) thì \(\dfrac{n-2}{n+5}\in Z\Rightarrow7⋮n+5\Leftrightarrow n+5\in U\left(7\right)=\left\{\pm1;\pm7\right\}\)

Lập bảng giá trị:

\(n+5\) \(1\) \(-1\) \(7\) \(-7\)
\(n\) \(-4\) \(-6\) \(2\) \(-12\)

Vậy, với \(x\in\left\{-12;-6;-4;2\right\}\) thì \(A=\dfrac{n-2}{n+5}\in Z\)

Nguyễn Thị Trà My
27 tháng 4 2017 lúc 8:39

a)=1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101

=100/101

b) Để A e Z

<=> n-2 chia hết n+5

=>n-2=(x+5)-7 chia hết n+5

=>n+5 e Ư(7)

=>n+5 e{7;-7;1;-1}

=>n e {2;-12;-4;-6}

𝕤𝕜𝕪:)
Xem chi tiết
𝕤𝕜𝕪:)
8 tháng 5 2022 lúc 20:21

SOS

𝕤𝕜𝕪:)
8 tháng 5 2022 lúc 20:26

hép☹

Minh Hiếu
8 tháng 5 2022 lúc 22:33

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Lê Hoa
Xem chi tiết
Toru
22 tháng 10 2023 lúc 15:39

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)

\(=1-\dfrac{1}{17}\)

\(=\dfrac{16}{17}\)

Nguyễn Đăng Nhân
22 tháng 10 2023 lúc 15:07

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)

\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)

\(=2-\dfrac{1}{17}\)

\(=\dfrac{33}{17}\)

Nguyet Tran
Xem chi tiết
★彡✿ทợท彡★
3 tháng 5 2022 lúc 23:05

a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)

\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)

\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)

\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)

\(=\dfrac{2}{9}\)

b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)

\(=1-\dfrac{1}{9}\)

\(=\dfrac{9}{9}-\dfrac{1}{9}\)

\(=\dfrac{8}{9}\)

Nguyễn Tuệ Khanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 22:27

\(I=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{199\cdot201}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{200}{201}=\dfrac{100}{201}\)

Akai Haruma
6 tháng 10 2021 lúc 22:54

Lời giải:

\(2\times I=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{199\times 201}\)

\(=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+....+\frac{201-199}{199\times 201}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)

\(=1-\frac{1}{201}=\frac{200}{201}\)

\(I=\frac{200}{201}:2=\frac{100}{201}\)

Nguyễn Mai Lan
7 tháng 10 2021 lúc 9:37

100/201

Nguyễn Tuệ Khanh
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 13:28

\(K=\dfrac{4}{1\times3}+\dfrac{4}{3\times5}+...+\dfrac{4}{299\times301}\)

\(=2\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{299\times301}\right)\)

\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{299}-\dfrac{1}{301}\right)\)

\(=2\times\left(1-\dfrac{1}{301}\right)=2\times\dfrac{300}{301}=\dfrac{600}{301}\)

Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 14:23

\(K=\dfrac{4}{1\cdot3}+\dfrac{4}{3\cdot5}+...+\dfrac{4}{299\cdot301}\)

\(=2\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{299}-\dfrac{1}{301}\right)\)

\(=2\cdot\dfrac{300}{301}=\dfrac{600}{301}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 14:18

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}>\dfrac{49}{100}=A\)

Xem chi tiết

Giải:

\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\) 

\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\) 

\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\) 

\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)

\(B=\dfrac{3}{2}\times\dfrac{47}{150}\) 

\(B=\dfrac{47}{100}\) 

Chúc em học tốt!