Chứng tỏ đa thức sau vô nghiêm
\(f\left(x\right)=x^2-6x+10\)
Chứng tỏ đa thức sau vô nghiệm:
\(A\left(x\right)=2x^2-6x+2020\)
Giúp mình với ạ!
\(\text{∆}'=3^2-2.2020\)
\(=-4031< 0\)
⇒ phương trình vô nghiệm
Vì 2x^2-6x > 0 với mọi x
=> 2x^2-6x+2020 > 0+2020 với mọi x
=> 2x^2-6x+2020 > 2020 với mọi x
=> A(x) > 0 ( khác 0 )
=> A(x) vô nghiệm
Cho đa thức F(x) = 2x- 4
a, Tìm nghiệm của F(x)
b, Chứng tỏ đa thức G(x) \(=F\left(x\right)+x^2-x+6\) vô nghiệm
\(a.\)
\(f\left(x\right)=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow x=2\)
\(b.\)
\(g\left(x\right)=2x-4+x^2-x+6\)
\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
PTVN
Chứng tỏ rằng đa thức \(f\left(x\right)=-x^8+x^5-x^2+x+1\)vô nghiệm
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp
Cho đa thức f(x) tỏa mãn \(\left(x^2-5x\right).f\left(x-2\right)=\left(x^2+3x+2\right).f\left(x+1\right)\)với mọi x. Chứng tỏ rằng đa thức f(x) không có nghiệm.
Cho 2 đa thức:
\(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5-10+x\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
Chứng tỏ rằng x=1 không phải là nghiệm của đa thức A(x) nhưng là nghiệm của đa thức B(x)
Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)
Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)
Cho các đa thức:
\(P\left(x\right)=x^3+4x^3+3x-6x-4-x^2\)
\(Q\left(x\right)=-x^3-x^2+3x+8\)
b) Tính B(x), biết B(x) = P(x) + Q(x)
c) Chứng tỏ đa thức B(x) không có nghiệm
b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)
\(B\left(x\right)=4x^3-2x^2+4\)
c) \(B\left(x\right)=4x^3-2x^2+4\)
\(B\left(x\right)=2.2xx^2-2x^2+4\)
\(B\left(x\right)=2x^2\left(2x-1\right)+4\)
ta có
\(2x^2\ge0\forall x\in R\)
\(=>2x^2\left(2x-1\right)\ge0\)
mà 4 > 0
\(=>2x^2\left(2x-1\right)+4>0\)
hay B(x) > 0
vậy B(x) ko có nghiệm
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) . Biết rằng 6a-12b-c = 0 . Chứng tỏ rằng \(f\left(2\right).f\left(-3\right)\ge0\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=10a-10b-\left(6a-12b-c\right)=10a-10b\)
\(f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c=15a-15b-\left(6a-12b-c\right)=15a-15b\)
\(\Rightarrow f\left(2\right).f\left(-3\right)=\left(10a-10b\right).\left(15a-15b\right)=150\left(a-b\right)^2\)
Mà \(\left(a-b\right)^2\ge0;\forall a;b\Rightarrow150\left(a-b\right)^2\ge0\)
\(\Rightarrow f\left(2\right).f\left(-3\right)\ge0\)
Cho đa thức \(f\left(x\right)=x^2-4x-5\) Chứng tỏ rằng \(x=-1;x=5\) là hai nghiệm của đa thức đó.
Đặt \(f\left(x\right)=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2+x-5x-5=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
--> hai nghiệm \(x=-1;x=5\) là hai nghiệm của đa thức \(f\left(x\right)\)
đặt f(x) = 0
\(\Leftrightarrow x^2-4x-5=0\\ \Leftrightarrow x^2+x-5x-5=0\\ \Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy x = 5 và x = -1 là 2 nghiệm của f(x)
Thay x = -1 vào đa thức f(x) có
f(x) = x2 - 4x - 5
f(-1) = (-1)2 -4.(-1) - 5
f(-1) = 0
Vậy x = -1 và nghiệm của đa thức f(x)
Thay x = 5 vào đa thức f(x) có
f(x) = x2 - 4x - 5
f(5) = =52 -4.5 - 5
f(5) = 0
Vậy x = 5 và nghiệm của đa thức f(x)
Chứng tỏ x= -5 là nghiệm của đa thức \(P\left(x\right)=x^2+6x+5\)
P(-5)=\(\left(-5\right)^2+6.\left(-5\right)+5\)=0
vậy -5 là n\(_o\) của P(x)
Lưu ý: n\(_o\) là kí hiệu của từ nghiệm
P(x)=x2+6x+5
Thay x tại -5
=>P(x)= (-5)2+6.-5+5
=>P(x)=25+-30+5
=>P(x)=0
Vậy -5 là nghiệm của đa thức P(x)